Skip to main content

Population Structure and Processes of Tundra Plants and Vegetation

  • Chapter
The Population Structure of Vegetation

Part of the book series: Handbook of Vegetation Science ((HAVS,volume 3))

Abstract

Selective forces of the physical environment are particularly strong in the tundra: positive plant interactions tend to replace the competition or self-thinning typical in warmer latitudes. Tundra areas are young and evolution is slow because of long life spans, low reproductive rates and a predominance of vegetative proliferation. However, recruitment from seed is important in open habitats such as fell-fields, but early mortality rates are high and recruitment is intermittent. Age class distributions resulting from vegetative reproduction show low recruitment levels but high survival rates due to the physiological interdependence of modules. The dynamic equilibrium of forest tundra plant populations is regulated by interactions between fluctuating populations of animals and plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadjian, V. (1970) Adaptations of antarctic terrestrial plants. In Antarctic Ecology, Vol. 2, M.W. Holdgate (Ed.), pp. 801 – 811. New York: Academic Press.

    Google Scholar 

  • Aleksandrova, V.D. (1980) The Arctic and Antarctic: their Division into Geobotanical Areas. Cambridge: Cambridge University Press. 247 pp.

    Google Scholar 

  • Allessio, M.L. and Tieszen, L.L. (1975a) Patterns of carbon allocation in an arctic tundra grass, Dupontia fischeri(Gramineae) at Barrow, Alaska. Am. J. Bot. 62: 797 – 807.

    Google Scholar 

  • Allessio, M.L. and Tieszen, L.L. (1975b) Leaf age effect on translocation and distribution of C-photoassimilate in Dupontia fischeriat Barrow, Alaska. Arct. Alp. Res. 7: 3 – 12.

    CAS  Google Scholar 

  • Batzli, G.O., White, R.G., Maclean, S.F. Jr., Pitelka, F.A. and Collier, B.D. (1980) The herbivore-based trophic system. In An Arctic Ecosystem. The Coastal Tundra at Barrow Alaska, J. Brown, P.C. Miller, L.L. Tieszen and F.L. Bunnel (Eds.), pp. 335 – 410. Stroudsberg: Dowden, Hutchinson and Ross Inc.

    Google Scholar 

  • Bell, K.L. and Bliss, L.C. (1978) Root growth in a polar semi desert environment. Can. J. Bot. 56: 2470 – 2490.

    Google Scholar 

  • Bell, K.L. and Bliss, L.C. (1980) Plant reproduction in a high arctic environment. Arct. Alp. Res. 12: 1 – 10.

    Google Scholar 

  • Beschel, R.E. (1958) Lichenometrical studies in West Greenland. Arctic 11: 254.

    Google Scholar 

  • Beschel, R.E. (1963) Observations on the time factor in interactions of permafrost and vegetation. Ottawa. Permafrost Tech. Mem. 76: 43 – 56.

    Google Scholar 

  • Billings, W.D. (1974) Adaptations and origins of alpine plants. Arct. Alp. Res. 6: 129 – 142.

    Google Scholar 

  • Billings, W.D. (1975) Arctic and alpine vegetation: plant adaptations to cold summer climates. In Arctic and Alpine Environments, J.D. Ives and R.G. Barry (Eds.), pp. 403 – 443. London: Methuen.

    Google Scholar 

  • Billings, W.D. and Mooney, H.A. (1968) The ecology of arctic and alpine plants. Biol. Rev. 43: 481 – 529.

    Google Scholar 

  • Billings, W.D., Peterson, K.M., Shaver, G.R. and Trent, A.W. (1977) Root growth, respiration, and carbon dioxide evolution in an arctic tundra soil. Arct. Alp. Res. 9: 127 – 135.

    Google Scholar 

  • Billings, W.D., Peterson, K.M. and Shaver, G.R. (1978) Growth turnover and respiration rates of roots and tillers in tundra graminoids. In:. Vegetation and production ecology of an Alaskian arctic tundra, L.L. Tieszen (Ed.), pp. 415–434. New York: Springer-Verlag.

    Google Scholar 

  • Billings, W.D., Shaver, G.R. and Trent, A.W. (1976) Measurement of root growth in simulated and natural temperature gradients over permafrost. Arct. Alp. Res. 8: 247 – 250.

    Google Scholar 

  • Bliss, L.C. (1956) A comparison of plant development in microenvironments of arctic and alpine tundras. Ecol. Monogr. 26: 303 – 307.

    Google Scholar 

  • Bliss, L.C. (1962) Caloric and lipid content in alpine tundra plants. Ecology 43: 753 – 757.

    CAS  Google Scholar 

  • Bliss, L.C. (1971) Arctic and alpine plant life cycles. Annu. Rev. Ecol. Syst. 2: 405 – 438.

    Google Scholar 

  • Bliss, L.C. (1981a) North American and Scandinavian tundras and polar deserts. In Tundra Ecosystems: Bliss, L.C (Eds.), pp. 38 – 46. Cambridge University Press.

    Google Scholar 

  • Bliss, L.C. (1981b) Summary. In Tundra Ecosystems: a Comparative Analysis, L.C. Bliss, O.W. Heal and J.J. Moore (Eds.), pp. 8 – 24. Cambridge: Cambridge University Press.

    Google Scholar 

  • Böcher, T.W. (1975) Det Grønne Grønland. Rhodos, Copenhagen: 256 pp.

    Google Scholar 

  • Bonde, E.K. (1968) Survival of seedlings of an alpine clover (Trifolium nanum Torr.). Ecology 49: 1193–1195:

    Google Scholar 

  • Bryson, R.A., Irving, W.N. and Larsen, J.A. (1965) Radiocarbon and soil evidence of former forest in the southern Canadian tundra. Science 147 (3633): 46 – 48.

    PubMed  CAS  Google Scholar 

  • Callaghan, T.V. (1973) A comparison of the growth of tundra plant species at several widely separated sites. Institute of Terrestrial Ecology, Merlewood Research and Development Paper No. 53. 52 pp.

    Google Scholar 

  • Callaghan, T.V. (1974) Intra-specific variation in Phleum alpinumL. with specific reference to polar populations. Arct. Alp. Res. 6: 361 – 401.

    Google Scholar 

  • Callaghan, T.V. (1976) Growth and population dynamics of Carex bigelowiiin an alpine environment. Strategies of growth and population dynamics of tundra plants, 3. Oikos 27: 402 – 413.

    Google Scholar 

  • Callaghan, T.V. (1977) Adaptive strategies in the life cycles of South Georgian graminoid species. In Adaptations Within Antarctic Ecosystems. G.A. Llano (Ed.), pp. 981 – 1002. Houston, Texas: Gulf Pub. Co.

    Google Scholar 

  • Callaghan, T.V. (1980) Age-related patterns of nutrient allocation in Lycopodium annotinumfrom Swedish Lapland. Strategies of growth and population dynamics of tundra plants, 5. Oikos 35: 373 – 386.

    Google Scholar 

  • Callaghan, T.V. (1984) Growth and translocation in a clonal southern hemisphere sedge, Uncinia meridensis. J. Ecol. 72: 529 – 546.

    Google Scholar 

  • Callaghan, T.V. and Collins, N.J. (1976) Introduction. Strategies of growth and population dynamics of tundra plants, 1. Oikos 27: 383 – 388.

    Google Scholar 

  • Callaghan, T.V. and Collins, N.J. (1981) Life cycles, population dynamics and the growth of tundra plants. In Tundra Ecosystems: a Comparative Analysis, L.C. Bliss, O.W. Heal and J.J. Moore (Eds.), pp. 257 – 284. Cambridge: Cambridge University Press.

    Google Scholar 

  • Callaghan, T.V. and Lewis, M.C. (1971) The growth of Phleum alpinumL. in contrasting habitats at a Sub-Antarctic station. New Phytol. 70: 1143 – 1154.

    Google Scholar 

  • Callaghan, T.V., Collins, N.J. and Callaghan, C.H. (1978) Photosynthesis, growth and reproduction of Hylocomium splendensand Polytrichum communein Swedish Lapland. Strategies of growth and population dynamics of tundra plants 4. Oikos 31: 73 – 88.

    Google Scholar 

  • Cernusca, A. and Seeber, M.C. (1981) Canopy structure, microclimate and the energy budget in different alpine communities. In Plants and Their Atmospheric Environment, J. Grace, E.D. Ford and P.G. Jarvis (Eds.), pp. 75 – 81. Oxford: Blackwell.

    Google Scholar 

  • Chabot, B.F. (1979) Metabolic and enzymatic adaptations at low temperature. In Comparative Mechanisms of Cold Adaptation, L.S. Underwood, L.L. Tieszen, A.B. Callahan and G.E. Folk (Eds.), pp. 282 – 301. New York: Academic Press.

    Google Scholar 

  • Chapin, F.S. III (1974) Morphological and physiological mechanisms of temperature compensation in phosphate absorbtion along a latitudinal gradient. Ecology 55: 1180 – 1198.

    CAS  Google Scholar 

  • Chapin, F.S. III, Tieszen, L.L., Lewis, M.C., Miller, P.C. and McCown, B.H. (1980) Control of tundra plant allocation patterns and growth. In An Arctic Ecosystem. The Coastal Tundra at Barrow, Alaska, J. Brown, P.C. Miller, L.L. Tieszen and F.L. Bunnell (Eds.), pp. 140 – 185. Stroudsberg: Dowden, Hutchinson and Ross Inc.

    Google Scholar 

  • Chapin, F.S. III, Van Cleave, K. and Chapin, M.C. (1979) Soil temperature and nutrient cycling in the tussock growth form of Eriophorum vaginatum. J. Ecol. 67: 169 – 189.

    CAS  Google Scholar 

  • Chester, A.L. and Shaver, G.R. (1982) Reproductive effort in cotton grass tussock tundra. Holarct. Ecol. 5: 200 – 206.

    Google Scholar 

  • Clarke, G.C.S. and Greene, S.W. (1970) Reproductive performance of two species of Pohliaat widely separated stations. Trans. Br. bryol. Soc. 6: 114 – 128.

    Google Scholar 

  • Collins, N.J. (1976) Growth and population dynamics of the moss. Polytrichum alpestrein the maritime antarctic. Strategies of growth and population dynamics of tundra plants, 2. Oikos 27: 389 – 401.

    Google Scholar 

  • Collins, N.J. and Oechel, W.C. (1974) The pattern of growth and translocation of photosynthate in a tundra moss, Polytrichum alpinum. Can. J. Bot. 52: 355 – 363.

    Google Scholar 

  • Dagon, R. R. (1966) Tundra — A definition and structural description. Polar Notes. 6: 22 – 35.

    Google Scholar 

  • Deevey, E. S. (1947) Life tables for natural population of animals. Q. Rev. Biol. 22: 283 – 314.

    PubMed  Google Scholar 

  • Emanuelsson, U. (1980) Mechanical impact on vegetation in the Tornetrask area. (Swedish with English summary). Fauna Flora Upps. 75: 37 – 42.

    Google Scholar 

  • Emanuelsson, U. (1984) Ecological effects of grazing and trampling on mountain vegetation in northern Sweden. Ph.D. dissertation, Univ. Lund, Sweden. 157 pp.

    Google Scholar 

  • Engell, K. (1973) A preliminary morphological cytological and embryological investigation in Polygonum viviparum. Bot. Tidsskr. 67: 305 – 316.

    Google Scholar 

  • Flower-Ellis, J.G.K. (1971) Age structure and dynamics of stands of bilberry (Vaccinium myrtillusL.) Department of Forest Ecology and Forest Soils, Royal College of Forestry, Stockholm. Research notes Nr. 9, 108 pp.

    Google Scholar 

  • Flower-Ellis, J.G.K. (1980a) Diurnal dry weight variation and dry matter allocation of some tundra plants. 1. Andromeda polifoliaL. In Ecology of a Subarctic Mire, M. Sonesson (Ed.), pp. 139–162. Stockholm: Ecol. Bull. 30.

    Google Scholar 

  • Flower-Ellis, J.G.K. (1980b) Diurnal dry weight variation and dry matter allocation of some tundra plants. 2. Rubus chamaemorusL. In Ecology of a Subarctic Mire, M. Sonesson (Ed.), pp. 163–179. Stockholm: Ecol. Bull. 30.

    Google Scholar 

  • Forrest, G.I. (1971) Structure and production of North Pennine blanket bog vegetation. J. Ecol. 59: 453 – 479.

    Google Scholar 

  • Forrest, G.I. and Smith, R.A.H. (1975) The productivity of a range of blanket bog vegetation types in the Northern Pennines. J. Ecol. 63: 173 – 202.

    Google Scholar 

  • French, D.D. (1981) Multivariate comparisons of IBP tundra biome site characteristics. In Tundra Ecosystems: a Comparative Analysis, L.C. Bliss, O.W. Heal and J.J. Moore (Eds.), pp. 47 – 75. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gifford, R.M. and Marshall, C. (1973) Photosynthesis and assimilate distribution in Lolium multflorumfollowing differential tiller defoliation. Aust. J. biol. Sci. 26: 517 – 526.

    CAS  Google Scholar 

  • Griggs, R.F. (1956) Competition and succession on a rocky mountain fell field. Ecology 37: 8–20.

    Google Scholar 

  • Grime, J.P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Nat. 111: 1169 – 1194.

    Google Scholar 

  • Grime, J.P. (1979) Plant Strategies and Vegetation Processes. Chichester, New York: John Wiley and Sons Ltd. 222 pp.

    Google Scholar 

  • Hagg, R.W. (1974) Nutrient limitations to plant production in two tundra communities. Can. J. Bot. 52: 103 – 116.

    Google Scholar 

  • Harmer, R. and Lee, J.A. (1978a) The growth and nutrient content of Festuca vivipara(L) S.M. plantlets. New Phytol. 80: 99 – 106.

    CAS  Google Scholar 

  • Harmer, R. and Lee, J.A. (1978b) The germination and viability of Festuca vivipara(L.) S.M. plantelets. New Phytol. 81: 745 – 751.

    Google Scholar 

  • Harper, J.L. (1967) A Darwinian approach to plant ecology. J. Ecol. 55: 247 – 270.

    Google Scholar 

  • Harper, J.L. (1981) The concept of population in modular organisms. In Theoretical Ecology, 2nd Edn, R.M. May (Ed.), pp. 53 – 77. Oxford: Blackwells.

    Google Scholar 

  • Haukoja, E. (1980) On the role of plant defences in the fluctuation of herbivore populations. Oikos. 35: 202 – 213.

    Google Scholar 

  • Headley, A.D., Callaghan, T.V. and Lee, J.A. (In press). Phosphorus economy throughout the life span of Lycopodium annotinum from Swedish Lapland. Oikos.

    Google Scholar 

  • Heilbronn, T.D. and Walton, D.W.H. (1984) Plant colonization of actively sorted stone stripes in the subAntarctic. Arct. Alp. Res. 16: 161 – 172.

    Google Scholar 

  • Hett, J.M. and Louks, O.L. (1976) Age structure models of balsam fir and eastern hemlock. J. Ecol. 64: 1029 – 1044.

    Google Scholar 

  • Hodgson, H.J. (1966) Floral initiation in Alaskan Gramineae. Bot. Gaz. 127: 64 – 70.

    Google Scholar 

  • Humlum, C. (1981) Age distribution and fertility of populations of the arctic-alpine species Oxyria digyna. Holarct. Ecol. 4: 238 – 244.

    Google Scholar 

  • Johnson, P.L. (1969) Arctic plants, ecosystems and strategies. Arctic 22: 341 – 355.

    Google Scholar 

  • Jolls, C.L. (1982) Plant population biology above timberline: biotic selective pressures and plant reproductive success. In Ecological Studies in the Colorado Alpine. A Fetschrift for John W. Marr, J.C. Halfpenny (Ed.), pp. 83–95. Univ. Colorado, Inst. Arct. Alp. Res. Occ. Pap. No. 37.

    Google Scholar 

  • Kallio, P. and Lehtonen, J. (1973) Birch forest damage caused by Oporinia autumnata(Bkh.) in 1955–66 in Utsjoki, N. Finland. Rep. Kevo Subarct. Res. Stat. 10: 55 – 69.

    Google Scholar 

  • Karlsson, S. (1980) Evergreen or deciduous — what does this mean to a plant in the mountains? (Swedish with English summary). Flora Fauna Upps. 75: 25 – 31

    Google Scholar 

  • Karlsson, S. (1982) Ecology of a deciduous and an evergreen dwarf shrub: Vaccinium uliginosumand Vaccinium vitis-idaeain subarctic Fennoscandia 2. Photosynthesis and carbon economy of leaves. Ph.D. dissertation, Univ. Lund, Sweden. 20 pp.

    Google Scholar 

  • Karunen, P. and Kallio, P. (1976) Seasonal variation in total lipid content of sub-Arctic Dicranum elongatum. Rep. Kevo Subarct. Res. Stat. 13: 63 – 70.

    Google Scholar 

  • Kawano, S., Hiratsuka, A. and Hayashi, K. (1982) Life history characteristics and survivorship of Erythronium japonicum. The productive and reproductive biology of flowering plants. Oikos 38: 129 – 149.

    Google Scholar 

  • Kihlman, A.O. (1890) Pflanzenbiologische Studien aus Russichen Lappland. Acta Soc. Fauna Flora fenn. 6 (3): 263 pp.

    Google Scholar 

  • Klickoff, L.C. (1965) Microenvironmental influence on vegetational pattern near timberline in central Sierra Nevada. Ecol. Monogr. 35: 187 – 211.

    Google Scholar 

  • Krog, J. (1955) Notes on temperature measurement indicators of special organisation in arctic and subarctic plants by utilization of radiated heat from the sun. Physiologia Pl. 8: 836 – 839.

    Google Scholar 

  • Larcher, W. (1980) Physiological Plant Ecology. Berlin Heidelberg, New York: Springer-Verlag. 303 pp.

    Google Scholar 

  • Lawrence, B.A., Lewis, M.C. and Miller, P.C. (1978) A simulation model of population processes of Arctic tundra graminoids. In Vegetation and Production Ecology of an Alaskan Arctic Tundra, L.L. Tiezen (Ed.), pp. 599 – 619. New York: Springer-Verlag.

    Google Scholar 

  • Lewis, M.C., Callaghan, T.V. and Jones, G.E. (1972) International biological programme, tundra biome, bipolar botanical project, Arctic research programme phase II. Report to the Royal Society, London, 34 pp.

    Google Scholar 

  • Lewis, M.C. and Callaghan, T.V. (1976) Tundra. In Vegetation and the Atmosphere, Vol. 2. J.L. Monteith (Ed.), pp. 399 – 433. London: Academic Press.

    Google Scholar 

  • Malmer, N. and NihlgÃ¥rd, B. (1980) Supply and transport of mineral nutrients in a subarctic mire. In Ecology of a Subarctic Mire, M. Sonesson (Ed.), pp. 63–95. Stockholm: Ecol. Bull. 30.

    Google Scholar 

  • Mark, A.F. (1965) Flowering, seeding and seedling establishment of narrow-leaved snow tussock, Chionochloa rigida. N.Z. J. Bot. 3: 180 – 193.

    Google Scholar 

  • Mark, A.F. (1970) Floral initiation and development in New Zealand alpine plants. N.Z. J. Bot. 8: 67 – 75.

    Google Scholar 

  • Mattheis, P.J., Tiezen, L.L. and Lewis, M.C. (1976) Responses of Dupontia fischerito simulated lemming grazing in an Alaskan arctic tundra. Ann. Bot. 40: 179 – 197.

    Google Scholar 

  • McGraw, J.B. and Shaver, G.R. (1982) Seedling density and seedling survival in Alaskan cotton grass tussock tundra. Holarct. Ecol. 5: 212 – 217.

    Google Scholar 

  • Miller, P.C. and Tiezen, L.L. (1972) A preliminary model of processes affecting primary production in the arctic tundra. Arct. Alp. Res. 4: 1 – 18.

    Google Scholar 

  • Miller, P.C. (1982) The availability and utilization of resources. In Tundra ecosystems. Proceedings of a workshop held in San Diego, California 9–12 October 1978, P.C. Miller (Ed.). Holarct. Ecol. 5: p. 83.

    Google Scholar 

  • Mølgaard, P. (1982) Temperature observations in high arctic plants in relation to microclimate in the vegetation of Peary Land, North Greenland. Arct. Alp. Res. 14 (2): 105 – 115.

    Google Scholar 

  • Moore, D.M. (1968) The vascular flora of the Falkland Islands. Scient. Rep. Br. Antarct. Surv. No. 60. 202 pp.

    Google Scholar 

  • Murray, D.F. (1978) Vegetation, floristics and phytogeography of Northern Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra, L.L. Tieszen (Ed.), pp. 19 – 36. New York: Springer-Verlag.

    Google Scholar 

  • Oinonen, E. (1967) Sporal regeneration of bracken. (Pteridium aquilinum(L.) Kuhn) in Finland in the light of the dimensions and the age of its clones. Acta For. Fenn. 83: 96 pp.

    Google Scholar 

  • Oinonen, E. (1968) The size of Lycopodium clavatumL. and L. annotinumL. stands as compared to that of L complanatumL. and Pteridum aquilinum(L.) Kuhn. stands, the age of the tree stand and the dates of fire on the site. Acta Forest. Fenn. 87: 53 pp.

    Google Scholar 

  • Oksanen, L. (1982) Trophic exploitation in relation to primary productivity. Reports from the Department of Biology. Univ. Turku No. 5.

    Google Scholar 

  • Pearl, R. (1928) The Rate of Living. London: University of London Press. 185 pp.

    Google Scholar 

  • Petersen, H.E. (1908) Dipensiaceae. Diapensia lapponicaL. In The Structure and Biology of Arctic Flowering Plants, E. Warming (Ed.), pp. 138–154. Meddr Grønland. (1912) 36.

    Google Scholar 

  • Petersen, P.M. (1981) Variation of the population structure of Polygonum viviparumL. in relation to certain environmental conditions. Meddr om Grønland Bioscience 4: 1 – 19.

    CAS  Google Scholar 

  • Plotnikov, V.V. (1977) Sporophyte ontogenesis of Lycopodium annotinumL. and its population structure (in Russian) Bot. Zh. SSSR 62: 1196 – 1200.

    Google Scholar 

  • Polunin, N. (1936) Plant succession in Norwegian Lapland. J. Ecol. 24: 372 – 391.

    Google Scholar 

  • Polunin, N. (1959) Circumpolar Arctic Flora. Oxford: Oxford University Press. 514 pp.

    Google Scholar 

  • Porsild, A.E. (1951) Plant life in the Arctic. Canadian Geogrl. J. 42: 120–145.

    Google Scholar 

  • Primack, R.B. (1973) Growth patterns of five species of Lycopodium. Am. Fern J. 63: 3 – 7.

    Google Scholar 

  • Raunkiaer, C. (1934) The Life Forms of Plants and Statistical Plant Geography. Translated by Carter, Fausball and Tansley. Oxford: Oxford University Press. 632 pp.

    Google Scholar 

  • Rodin, L.E. and Bazilevich, N.I. (1967) Production and Mineral Cycling in Terrestrial Vegetation. Edinburgh and London: Oliver and Boyd. 288 pp.

    Google Scholar 

  • Rosswall, T. and Heal, O.W. (1975) The IBP. Tundra Biome — an Introduction. In Structure and Function of Tundra Ecosystems, T. Rosswall and O.W. Heal (Eds.), pp. 7–16. Stockholm: Ecol. Bull. 20.

    Google Scholar 

  • Russell, R.S. (1940) Physiological and ecological studies on an arctic vegetation. III. Observations of carbon assimilation, carbohydrate storage, and stomata movement in relation to the growth of plants on Jan Mayen Island. J. Ecol. 28: 289 – 309.

    CAS  Google Scholar 

  • Salisbury, F.B. and Spomer, G.G. (1964) Leaf temperatures of alpine plants in the held. Planta 60: 497 – 505.

    Google Scholar 

  • Sandberg, G. (1958) Fjällens vegetationsregioner, der vegetationsserier och viktigaste växtekologiska faktorer. In Renbeten och deras gradering, F. Skuncke (Ed.), pp. 360. Uppsala. Lappräsendet-Renforskningen, Meddr 4.

    Google Scholar 

  • Savile, D.B.O. (1972) Arctic adaptations in plants. Can. Dep. Agric. Monogr. 6: 81 pp.

    Google Scholar 

  • Schroeter, C. (1926) Das Pfanzenleben der Alpen. Zurich: Albert Baustein. 1288 pp.

    Google Scholar 

  • Shaver, G.R. and Billings, W.D. (1975) Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology 56: 401 – 409.

    Google Scholar 

  • Shaver, G.R. and Billings, W.D. (1976) Carbohydrate accumulation in tundra graminoid plants as a function of season and tissue age. Flora 165: 247 – 267.

    CAS  Google Scholar 

  • Sonesson, M. and Lundberg, B. (1974) Late Quaternary forest development of the Torneträsk area, North Sweden. 1. Structure of forest ecosystems. Oikos 25: 121 – 123.

    Google Scholar 

  • Sonesson, M. (1974) Late Quaternary forest development of the Torneträsk area, North Sweden. 2. Pollen analytical evidence. Oikos 25: 288 – 307.

    Google Scholar 

  • Sonesson, M. and Hoogesteger, J. (1983) Recent tree line dynamics (Betula pubescens, f. tortuosa(Ledeb.) Nyman in northern Sweden. In Tree Line Ecology. Proceedings of the Northern Quebec Treeline Conference, P. Morisset and S. Payette (Eds.), pp. 49 – 54. Quebec: Université Laval.

    Google Scholar 

  • Sørensen, T. (1941) Temperature relations and phenology of the North East Greenland flowering plants. Meddr Grønland. 125: 305 pp.

    Google Scholar 

  • Svoboda, J. (1977) Ecology and primary production of raised beach communities. In Truelove Lowland, Devon Island, Canada: a high Arctic ecosystem, L.C. Bliss (Ed.), pp. 185 – 216. Edmonton, Alberta: University of Alberta Press.

    Google Scholar 

  • Tallowin, J.R.B. (1977a) Vegetative proliferation in Festuca contractaT, Kirk on South Georgia. Br. Antarct. Surv. Bull. 45: 13 – 17.

    Google Scholar 

  • Tallowin, J.R.B. (1977b) The reproductive strategies of a subantarctic grass Festuca contractaT. Kirk. In Adaptations within Antarctic Ecosystems, G.A. Llano (Ed.), pp. 967 – 980. Houston, Texas: Gulf Publishing Co.

    Google Scholar 

  • Tenow, O. (1972) The outbreaks of Oporinia autumnataBkn. and Operophtheraspp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zool. Bidr. Upps. Suppl. 2: 107 pp.

    Google Scholar 

  • Tenow, O. (1975) Topographical dependence of an outbreak of Oporinia autumnataBkh. (Lep. Geometridae) in a mountain birch forest in northern Sweden. Zoon 3 85 – 110.

    Google Scholar 

  • Tieszen, L. L. (1973) Photosynthesis and respiration in arctic tundra grasses: Field light intensity and temperature responses. Arct. Alp. Res. 5: 239 – 251.

    CAS  Google Scholar 

  • Tieszen, L.L., Miller, P.C. and Oechel, W.C. (1980) Photosynthesis. In An Arctic Ecosystem. The Coastal Tundra at Barrow, Alaska, J. Brown, P.C. Miller, L.L. Tieszen and F.L. Bunnell (Eds.), pp. 102 – 139. Stroudsberg: Dowden, Hutchinson and Ross Inc.

    Google Scholar 

  • Verduin, J. (1972) Caloric content and available energy in plant matter. Ecology 53: 982.

    Google Scholar 

  • Wager, H.G. (1938) Growth and survival of plants in the Arctic. J. Ecol. 26: 390–410.

    CAS  Google Scholar 

  • Walter, H. (1979) Vegetation of the Earth and Ecological Systems of the Geobiosphere 2nd Edition. New York: Springer-Verlag. 274 pp.

    Google Scholar 

  • Walton, D.W.H. (1976) Dry matter production in Acaena(Rosaceae) on a subantarctic island. J. Ecol. 64: 399 – 415.

    Google Scholar 

  • Warming, E. (1909) Oecology of Plants. Oxford: Clarendon Press. 422 pp.

    Google Scholar 

  • Warren-Wilson, J. (1964) Annual growth of Salix arcticain the High Arctic. Ann. Bot. 28: 71 – 76.

    Google Scholar 

  • Webber, P.J. (1978) Spatial and temporal variation of the vegetation and its production, Barrow, Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra, pp. 37 – 112. New York: Springer-Verlag.

    Google Scholar 

  • White, J. (1980) Demographic factors in populations of plants. In Demography and Evolution in Plant Populations, O.T. Solbrig (Ed.), pp. 21 – 48. Oxford: Blackwell.

    Google Scholar 

  • Whitehead, F.H. (1951) Ecology of the Altiplano of Monte Maiella, Italy. J. Ecol. 39: 330 – 335.

    Google Scholar 

  • Whittaker, R.H. (1975) Communities and Ecosystems, 2nd edition. New York: Macmillan. 385 pp.

    Google Scholar 

  • Wijk, S. (1980) Plants and the snow cover (Swedish with English summary). Fauna Flora, Upps. 75: 32 – 36.

    Google Scholar 

  • Wielgolaski, F.E. (1972) Productivity of World Ecosystems, P.E. Reiche, J.F. Franklin and D.W. Goodall (Eds.), pp. 1–12. Washington, D.C.: National Academy of Sciences.

    Google Scholar 

  • Wielgolaski, F.E., Kjelvik, S. and Kallio, P. (1975) Mineral content of tundra and forest tundra plants. In Fennoscandian Tundra Ecosystems. Part 1. Plants and Microorganisms, F.E. Wielgolaski (Ed.), pp. 316 – 332. Berlin: Springer-Verlag.

    Google Scholar 

  • Wielgolaski, F.E., Bliss, L.C., Svoboda, J. and Doyle, G. (1981) Primary production of tundra. In Tundra Ecosystems: a Comparative Analysis, L.C. Bliss, O.W. Heal and J.J. Moore (Eds.), pp. 187 – 225. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Callaghan, T.V., Emanuelsson, U. (1985). Population Structure and Processes of Tundra Plants and Vegetation. In: White, J. (eds) The Population Structure of Vegetation. Handbook of Vegetation Science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5500-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5500-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8927-2

  • Online ISBN: 978-94-009-5500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics