Skip to main content

Vibrational and Rotational Transitions of Hydrogen Bonded Complexes from Theory and Experiment

  • Conference paper
Book cover Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules

Abstract

Exploiting the interface between spectroscopy and ab initio investigation can be of real benefit in understanding the subtle properties of hydrogen bonded complexes. However, what theory and experiment determine most directly are not precisely corresponding values, and so the differences are important in a detailed comparison. This point is considered here for certain of the primary questions that arise in studying weak complexes, such as bond strengths, equilibrium structures, vibrational frequencies and interconversions. Particular reference is made to the hydrogen fluoride dimer where ab initio calculations and experiment have been able to provide spectroscopic parameters to high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.S. Altman, W.M. Crofton and T. Oka, J. Chem. Phys. 80, 3911 (1984).

    Article  CAS  Google Scholar 

  2. T.J. Lee and H.F. Schaefer, J. Chem. Phys. 80, 2977 (1984).

    Article  CAS  Google Scholar 

  3. P.S. Dardi and C.E. Dykstra, Ap. J. Lett. 240, 171 (1980).

    Article  Google Scholar 

  4. P.K. Pearson and H.F. Schaefer, Ap. J. 192, 33 (1974).

    Article  CAS  Google Scholar 

  5. D.J. DeFrees, G.H. Loew and A.D. McLean, Ap. J. 257, 376 (1982).

    Article  CAS  Google Scholar 

  6. D.J. DeFrees, J.S. Binkley and A.D. McLean, J. Chem. Phys. 80, 3720 (1984).

    Article  CAS  Google Scholar 

  7. T. Amano, J. Chem. Phys. 81, 3350 (1984).

    Article  CAS  Google Scholar 

  8. M.D. Joesten and L. J. Schaad, “Hydrogen Bonding” (Marcel Dekker, New York, 1974).

    Google Scholar 

  9. A.S. Pine and W.J. Lafferty, J. Chem. Phys. 78, 2154 (1983).

    Article  CAS  Google Scholar 

  10. A.S. Pine, W.J. Lafferty and B.J. Howard, J. Chem. Phys. 81, 2939 (1984).

    Article  CAS  Google Scholar 

  11. E.K. Kyrö, P. Shoja-Chaghervand, K. McMillan, M. Eliades, D. Danzeiser, and J.W. Bevan, J. Chem. Phys. 79, 78 (1983).

    Article  Google Scholar 

  12. R.K. Thomas, Proc. R. Soc. London A325, 133 (1971).

    Google Scholar 

  13. E. Kyro, R. Warren, K. McMillan, M. Eliades, D. Danzeiser, P. Shoja-Chaghervand, S.G. Lieb and J.W. Bevan, J. Chem. Phys. 78, 5881 (1983).

    Article  CAS  Google Scholar 

  14. L. Andrews, J. Phys. Chem. 88, 2940 (1984).

    Article  CAS  Google Scholar 

  15. J.M. Lisy, A. Tramer, M.F. Vernon and Y.T. Lee, J. Chem. Phys. 75, 4733 (1981).

    Article  CAS  Google Scholar 

  16. M.P. Cassasa, C.M. Western, F.G. Celii, D.E. Brinza and K.C. Janda, J. Chem. Phys. 79, 3227 (1983).

    Article  Google Scholar 

  17. A.C. Legon, D.J. Milien and S.C. Rogers, Proc. R. Soc. Lond. A370, 213 (1980).

    Google Scholar 

  18. M.A. Benzel and C.E. Dykstra, J. Chem. Phys. 76, 1602 (1982)

    Article  Google Scholar 

  19. M.A. Benzel and C.E. Dykstra, J. Chem. Phys. 78, 4052 (1983)

    Article  CAS  Google Scholar 

  20. M.A. Benzel and C.E. Dykstra, J. Chem. Phys. 80, 3510 E (1984).

    Article  Google Scholar 

  21. D.W. Michael, C.E. Dykstra and J.M. Lisy, J. Chem. Phys. 81, 5998 (1984).

    Article  Google Scholar 

  22. L.A. Curtiss and J.A. Pople, J. Molec. Spect. 48, 413 (1973).

    Article  CAS  Google Scholar 

  23. J.W. Cooley, Math. Comp. 15, 363 (1961).

    Google Scholar 

  24. S.F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  25. J. Cizek, J. Chem. Phys. 45, 4256 (1966)

    Article  CAS  Google Scholar 

  26. J. Cizek, Adv. Chem. Phys. 14, 35 (1960).

    Google Scholar 

  27. J. Cizek, J. Paldus and L. Sroubkova, Int. J. Quantum Chem. 3, 149 (1969).

    Article  CAS  Google Scholar 

  28. A.C. Hurley, “Electron Correlation in Small Molecules” (Academic Press, New York, 1976).

    Google Scholar 

  29. J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J. Quantum Chem. 14, 545 (1978).

    Article  CAS  Google Scholar 

  30. J. Paldus, J. Chem. Phys. 67, 303 (1977).

    Article  CAS  Google Scholar 

  31. R.J. Bartlett and G.D. Purvis, Int. J. Quantum Chem. 14, 561 (1978); Physica Scripta 21, 255 (1980).

    CAS  Google Scholar 

  32. R.J. Bartlett, C.E. Dykstra and J. Paldus, in “Advanced Theories and Computational Approaches to the Electronic Structure of Molecules,” ed. C.E. Dykstra (Reidel, Dordrecht, Holland, 1984).

    Google Scholar 

  33. R.A. Chiles and C.E. Dykstra, Chem. Phys. Lett. 80, 69 (1981);

    Article  CAS  Google Scholar 

  34. S.M. Bachrach, R.A. Chiles and C.E. Dykstra, J. Chem. Phys. 75, 2270 (1981).

    Article  CAS  Google Scholar 

  35. K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18, 1243 (1980).

    Article  CAS  Google Scholar 

  36. J. Paldus, J. Cizek and M. Takahashi, submitted.

    Google Scholar 

  37. J. Paldus, M. Takahashi and R.W.H. Cho, submitted.

    Google Scholar 

  38. R.A. Chiles and C.E. Dykstra, J. Chem. Phys. 74, 4544 (1981).

    Article  CAS  Google Scholar 

  39. W. Meyer, J. Chem. Phys. 64, 2901 (1976).

    Article  CAS  Google Scholar 

  40. C.E. Dykstra, H.F. Schaefer and W. Meyer, J. Chem. Phys. 65, 2740 (1976).

    Article  CAS  Google Scholar 

  41. W. Meyer, R. Ahlrichs and C.E. Dykstra in “Advanced Theories and Computational Approaches to the Electronic Structure of Molecules,” ed. C.E. Dykstra (Reidel, Dordrecht, Holland, 1984).

    Google Scholar 

  42. S.J. Harris, S.E. Novick and W. Klemperer, J. Chem. Phys. 60, 3208 (1974).

    Article  CAS  Google Scholar 

  43. T.J. Balle, E.J. Campbell, M.R. Keenan and W.H. Flygare, J. Chem. Phys. 72, 922 (1980).

    Article  CAS  Google Scholar 

  44. A.C. Legon, Ann. Rev. Phys. Chem. 14, 275 (1983).

    Article  Google Scholar 

  45. R.F. Curl, T. Ikeda, R.S. Williams, S. Leavell and L.H. Scharpen, J. Am. Chem. Soc. 95, 6182 (1973).

    Article  CAS  Google Scholar 

  46. M.A. Benzel and C.E. Dykstra, Chem. Phys. 80, 273 (1981).

    Article  Google Scholar 

  47. S.-Y. Liu and C.E. Dykstra, unpublished results.

    Google Scholar 

  48. A.C. Legon, P.D. Soper and W.H. Flygare, J. Chem. Phys. 74, 4944 (1981).

    Article  CAS  Google Scholar 

  49. P.D. Soper, A.C. Legon, W.G. Read, and W.H. Flygare, J. Chem. Phys. 76, 292 (1982).

    Article  CAS  Google Scholar 

  50. C.E. Dykstra, Ann. Rev. Phys. Chem. 32, 25 (1981).

    Article  CAS  Google Scholar 

  51. B.L. Cousins, S.C. O’Brien and J.M. Lisy, J. Phys. Chem. 88, 5142 (1984).

    Article  CAS  Google Scholar 

  52. M.R. Keenan, L.W. Buxton, E.J. Campbell, A.C. Legon and W.H. Flygare, J. Chem. Phys. 74, 2133 (1981).

    Article  CAS  Google Scholar 

  53. M.R. Keenan, Ph.D. Thesis, University of Illinois, 1981

    Google Scholar 

  54. B.J. Howard, T.R. Dyke and W. Klemperer, J. Chem. Phys., in press.

    Google Scholar 

  55. T. DiPaola, C. Boaurderon and C. Sandorfy, Can. J. Chem. 50, 3161 (1972);

    Article  Google Scholar 

  56. C. Sandorfy, Topics Curr. Chem. 120, 41 (1984).

    CAS  Google Scholar 

  57. R.N. Sileo and T.A. Cool, J. Chem. Phys. 65, 117 (1976).

    Article  CAS  Google Scholar 

  58. H.-J. Werner and P. Rosmus, J. Chem. Phys. 73, 2319 (1980).

    Article  CAS  Google Scholar 

  59. P.G. Jasien and C.E. Dykstra, Int. J. Quant. Chem. S17, 289 (1983).

    Google Scholar 

  60. W.A.P. Luck in “Water, A Comprehensive Treatise,” Vol. 2, ed. F. Franks (Plenum Press, New York, 1973).

    Google Scholar 

  61. M.J. Frisch, J.A. Pople and J.E. Del Bene, J. Chem. Phys. 78, 4064 (1983).

    Article  Google Scholar 

  62. A.E. Barton and B.J. Howard, Faraday Discuss. Chem. Soc. 73, 45 (1982).

    Article  Google Scholar 

  63. I.M. Mills, J. Phys. Chem. 88, 532 (1984).

    Article  CAS  Google Scholar 

  64. W.G. Read and W.H. Flygare, J. Chem. Phys. 76, 2238 (1982).

    Article  CAS  Google Scholar 

  65. Chr. Votava, R. Ahlrichs and A. Geiger, J. Chem. Phys. 78, 6841 (1983).

    Article  CAS  Google Scholar 

  66. N. Ohashi and A.S. Pine, J. Chem. Phys. 81, 73 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Dykstra, C.E., Lisy, J.M. (1985). Vibrational and Rotational Transitions of Hydrogen Bonded Complexes from Theory and Experiment. In: Bartlett, R.J. (eds) Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5474-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5474-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8917-3

  • Online ISBN: 978-94-009-5474-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics