Skip to main content

Intermolecular Interactions Involving First Row Hydrides: Spectroscopic Studies of Complexes of HF, H2O, NH3, and HCN

  • Conference paper
Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules

Abstract

This article reviews the structural characterization, by means of rotational spectroscopy, of a number of complexes of HF, H2O, NH3, and HCN. In addition to the complexes of each of these hydrides with each other, the complexes with CO, CO2, C2H2, and C2H4 are also examined. The studies of the complexes of NH3 are complemented by recently obtained infrared-microwave double resonance results.

Supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Franks, “Water, A Comprehensive Treatise,” Vol. 4–6, (Plenum, New York, 1972).

    Google Scholar 

  2. R. Taylor and O. Kennard, Acc. Chem. Res. 17, 320 (1984).

    Article  CAS  Google Scholar 

  3. G.C. Pimentel and A.D. McClellan, “The Hydrogen Bond,” (Freeman, San Francisco, 1960).

    Google Scholar 

  4. T.C. English and J.C. Zorn, “Methods of Experimental Physics,” Vol. 3 (2nd Edition), D. Williams, ed. (Academic Press, Inc., New York, 1972).

    Google Scholar 

  5. T.J. Balle, E.J. Campbell, M.R. Keenam and W.H. Flygare, J. Chem. Phys. 71, 2723 (1979).

    Article  CAS  Google Scholar 

  6. Z. Kisiel, A.C. Legon and D.J. Milien, Proc. R. Soc. London A 381 , 419 (1982).

    Google Scholar 

  7. G.T. Fraser, D.D. Nelson, Jr., A. Charo and W. Klemperer, J. Chem. Phys., to be published.

    Google Scholar 

  8. S.A. Clough, Y. Beers, G.P. Klein and L.S. Rothman, J. Chera. Phys. 59, 2254 (1973).

    Article  CAS  Google Scholar 

  9. M.D. Marshall and J.S. Muenter, J. Mol. Spect. 85, 322 (1981).

    Article  CAS  Google Scholar 

  10. J.S. Muenter and W. Klemperer, J. Chem. Phys. 52, 6033 (1970).

    Article  Google Scholar 

  11. J.S. Muenter, J. Mol. Spec. 55, 490 (1975).

    Article  CAS  Google Scholar 

  12. W.L. Ebenstein and J.S. Muenter, J. Chem. Phys. 80, 3989 (1984).

    Article  CAS  Google Scholar 

  13. T.R. Dyke, K.M. Mack and J.S. Muenter, J. Chem. Phys. 66, 498 (1977).

    Article  CAS  Google Scholar 

  14. K.I. Peterson and W. Klemperer, J. Chem. Phys. 81, 3842 (1984).

    Article  CAS  Google Scholar 

  15. T.R. Dyke, Top. Current Chem. 120, 85 (Spring-Verlag, N.Y., 1984).

    Google Scholar 

  16. T.A. Fisher, K.I. Peterson and W. Klemperer, work in progress.

    Google Scholar 

  17. K.I. Peterson and W. Klemperer, J. Chem. Phys., manuscript in preparation.

    Google Scholar 

  18. P.D. Aldrich, A.C. Legon and W.H. Flygare, J. Chem. Phys. 75, 2126 (1981).

    Article  CAS  Google Scholar 

  19. A.J. Fillery-Travis, A.C. Legon and L.C. Willoughby, Chem. Phys. Lett. 98, 369 (1983).

    Article  CAS  Google Scholar 

  20. C.R. Quade, J. Chem. Phys. 47, 1073 (1967).

    Article  CAS  Google Scholar 

  21. M.J. Frisch, J.A. Pople and J.E. Del Bene, J. Chem. Phys. 78, 4063 (1983).

    Article  CAS  Google Scholar 

  22. G.T. Fraser, K.R. Leopold and W. Klemperer, J. Chem. Phys. 80, 1423 (1984).

    Article  CAS  Google Scholar 

  23. G.T. Fraser, K.R. Leopold, D.D. Nelson, Jr., A. Tung and W. Klemperer, J. Chem. Phys. 80, 3073 (1984).

    Article  CAS  Google Scholar 

  24. B.J. Howard, private communication.

    Google Scholar 

  25. G.T. Fraser, K.R. Leopold and W. Klemperer, J. Chem. Phys. 81, 2577 (1984).

    Article  CAS  Google Scholar 

  26. G.T. Fraser, D.D. Nelson, Jr. and W. Klemperer, work in progress.

    Google Scholar 

  27. Z. Latajka and S. Scheiner, J. Chem. Phys. 81, 407 (1984) and references therein.

    Article  CAS  Google Scholar 

  28. R.L. DeLeon and J.S. Meunter, J. Chem. Phys. 72, 6020 (1980).

    Article  CAS  Google Scholar 

  29. The 10 K rotational temperature of the van der Waals dimers is suggested by previous microwave studies of weakly bound complexes. See, for example, K.R. Leopold, G.T. Fraser and W. Klemperer, J. Chem. Phys. 80, 1039 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Peterson, K.I., Fraser, G.T., Nelson, D.D., Klemperer, W. (1985). Intermolecular Interactions Involving First Row Hydrides: Spectroscopic Studies of Complexes of HF, H2O, NH3, and HCN. In: Bartlett, R.J. (eds) Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5474-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5474-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8917-3

  • Online ISBN: 978-94-009-5474-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics