Skip to main content

Catalysis and the Polyethylene Revolution

  • Chapter
History of Polyolefins

Part of the book series: Chemists and Chemistry ((CACH,volume 7))

Abstract

The world of polyolefins is enormous (Table I).[1a] Indeed the world of polyethylene itself is very large and is undergoing a major revolution (Table II).[1b-4]. Developments in catalysis for polyethylene in the last decade have had a major impact on the polyethylene industry. After nearly a half century of producing low-density polyethylenes (LDPE) at 20,000–50,000 psi and 300°C (Figure 1), new technology capable of operating at less than 300 psi and near 100°C has emerged. Union Carbide Corporation has developed a unique and versatile low-pressure, gas-phase process that does away with the extremely high pressures and temperatures characteristic of the conventional processes for making low-density polyethylenes. The scientific community and industrial organizations around the world have recognized Union Carbide’s gas-phase, UNIPOL process, as a major technological accomplishment.[2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Digest of Polymer Developments, Springborn Laboratories, Inc., N. Platzer, Ed., Confidential Publ., October 1984.

    Google Scholar 

  2. Plastics Industry Europe, Vol. 8, No. 18, End-September 1984.

    Google Scholar 

  3. Chem. Eng., 1979, 86 (December 8), 80–85 (1979 Kirkpatrick Chemical Engineering Achievement Award [Union Carbide Corporation]).

    Google Scholar 

  4. F. J. Karol, Chemtech., Vol. 13, (April 1983) pp. 222–228. Reprinted in part with permission of American Chemical Society.

    CAS  Google Scholar 

  5. R. B. Staub, Paper Presented at Golden Jubilee Conference for Polyethylene 1933–1983, London, June 8–10, 1983, Paper No. B5.4.

    Google Scholar 

  6. H. M. Stanley, spiin Ethylene and Its Industrial Derivatives, S. A. Miller ed., Ernest Benn, Ltd., London 1969, Chapter 1, pp. 28–32.

    Google Scholar 

  7. A. H. Willbourn, see reference 4, Paper No. A1.

    Google Scholar 

  8. D. W. Ginns, see reference 4, Paper No. A2.

    Google Scholar 

  9. J. Boor, Jr., Ziegler-Natta Catalysts and Polymerizations, Academic, New York, 1979.

    Google Scholar 

  10. J. P. Hogan, J. Polym. Sci., Part A-1, 8, 2637–2652 (1970); J. P. Hogan and R. L. Banks (Phillips) U.S. Patent 2,825,721 (1958).

    Article  CAS  Google Scholar 

  11. T. K. Moynihan, see reference 4, Paper No. B5.3.1.

    Google Scholar 

  12. Chem. and Eng. News, 47, (17), (1969) 15.

    Google Scholar 

  13. J. P. Hogan, see reference 4, Paper No. B3.1.

    Google Scholar 

  14. J. P. Machon, spiin Transition Metal Catalyzed Polymerizations, Part B (R. P. Quirk, ed.), MMI Press Symposium Series Vol. 4, Harwood Academic Publ., New York, 1983, pp. 639–649.

    Google Scholar 

  15. Chemical Week, Vol. 121, November 23, 1977, p. 35.

    Google Scholar 

  16. W. A. Fraser, L. S. Scarola, and M. Concha, TAPPI Paper Synthetics Course, Cincinnati, Ohio, September 15–17, 1980, pp. 237–248.

    Google Scholar 

  17. Plast. World, November 1984, 42 (12), 38–41.

    Google Scholar 

  18. F. J. Karol, Catal. Rev.-Sci. Eng., 26 (3 & 4), 557–595 (1984).

    Article  CAS  Google Scholar 

  19. I. J. Levine and F. J. Karol, U.S. Patent 4,011,382 (1977).

    Google Scholar 

  20. G. L. Goeke, B. E. Wagner, and F. J. Karol, U.S. Patent 4,302,565 (1981).

    Google Scholar 

  21. F. J. Karol, G. L. Goeke, B. E. Wagner, W. A. Fraser, R. J. Jorgensen, and N. Friis, U.S. Patent 4,302,566 (1981).

    Google Scholar 

  22. A. Noshay, F. J. Karol, and R. J. Jorgensen, U.S. Patent 4,482,687 (1984).

    Google Scholar 

  23. See reference 8, Chapter 8.

    Google Scholar 

  24. J. Wristers, J. Polym. Sci., Polym. Phys. Ed., 11, 1601–1617 (1973).

    Google Scholar 

  25. M. P. McDaniel, J. Polym. Sci., Polym. Chem. Ed., 19, 1967–1976 (1981).

    Article  CAS  Google Scholar 

  26. Plast. World, October 1984, 42 (11), 8–9 and 86.

    Google Scholar 

  27. D. E. James, Paper Presented at 1985 BIS Specialty Polyethylene Films Conference, Brussels, Belgium, April 17–18, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 D. Reidel Publishing Company

About this chapter

Cite this chapter

Karol, F.J. (1989). Catalysis and the Polyethylene Revolution. In: Seymour, R.B., Cheng, T. (eds) History of Polyolefins. Chemists and Chemistry, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5472-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5472-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8916-6

  • Online ISBN: 978-94-009-5472-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics