Skip to main content

Coordinatization of Lattices

  • Chapter
Rings and Geometry

Part of the book series: NATO ASI Series ((ASIC,volume 160))

Abstract

We characterize the lattices which are isomorphic to submodule lattices of torsion free modules of Goldie dimension at least three over left Ore domains. The characterizing lattice-theoretic properties (axioms) are simple, natural, independent and of a geometric flavor.

In order to get uniqueness of the coordinatizing module (and ring) we start with a lattice L together with a distinguished subset P of “points” which shall correspond exactly to the non-zero cyclic submodules. In the proof of the coordinatization theorem we first construct a factor lattice L/~ to which we can apply a lattice theoretic version of the classical coordinatization theorem of projective geometry. Thus we get a skew field K and a K-vectorspace V such that L/~ is isomorphic to the lattice of linear subspaces of V. Then we construct a subring R ⊑ K, an R-submodule M ⊑ K and a lattice isomorphism f between L and the lattice of R-submodules of M with f[P] = {Rx|x∈M\{0}}.

The author wants to thank the Deutsche Forschungsgemeinschaft for their support during the formulation of the present paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya, I., ‘On the representation of complemented modular lattices’, J. Math. Soc. Japan 9 (1957), 263–279.

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, W., Fuller, K., Rings and Categories of Modules, Springer-Verl., New York (1974).

    MATH  Google Scholar 

  3. Artmann, B., ‘On coordinates in modular lattices’, Illinois J. Math. 12 (1968), 626–648.

    MathSciNet  MATH  Google Scholar 

  4. Baer,R., Linear algebra and projective geometry, Academic Press, New York (1952).

    MATH  Google Scholar 

  5. Baer, R., ‘A unified theory of projective spaces and finite Abelian groups’, Trans. Amer. Math. Soc. 52 (1942).

    Google Scholar 

  6. Birkhoff, G., Lattice theory, third ed., AMS Colloq. Publ. (1967).

    Google Scholar 

  7. Brehm, U., ‘Untermodulverbände torsionsfreier Moduln’, Dissertation, Freiburg i. Br. (1983).

    Google Scholar 

  8. Brehm, U., ‘Representation of sumreserving mappings between submodule lattices by R-balanced mappings’, to appear.

    Google Scholar 

  9. Cohn, P., Free rings and their relations, Academic Press, London (1971).

    MATH  Google Scholar 

  10. Crawley, P., Dilworth, R., Algebraic theory of lattices, Prentice Hall, Englewood Cliffs (1973).

    MATH  Google Scholar 

  11. Day, A., ‘Equational theories of projective geometries’, Math. Report 3–81, Dept. Math. Sci. Lakehead Univ. (1981).

    Google Scholar 

  12. Day, A., ‘Geometrical applications in modular lattices’, Universal Algebra and Lattice Theory, Lect. Notes in Math. 1004, Springer-Verl., Proceedings, Puebla (1982), 111–141.

    Google Scholar 

  13. Day, A., ‘A lemma on projective geometries as modular and/or arguesian lattices’, Canad. Math. Bull. 26 (1983), 283–290.

    Article  MathSciNet  MATH  Google Scholar 

  14. Day, A., Pickering, D., ‘The coordinatization of Arguesian lattices’, Trans. Amer. Math. Soc. 278 (1983), 507–522.

    Article  MathSciNet  MATH  Google Scholar 

  15. Faltings, G., ‘Modulare Verbände mit Punktsystem’, Geometriae Dedicata 4 (1975), 105–137.

    Article  MathSciNet  MATH  Google Scholar 

  16. Freese, R., ‘Projective geometries as projective modular lattices’, Trans. Amer. Math. Soc. 251 (1979), 329–342.

    Article  MathSciNet  MATH  Google Scholar 

  17. Frink, O., ‘Complemented lattices and projective spaces of infinite dimension’, Trans. Amer. Math. Soc. 60 (1946), 452–467.

    MathSciNet  MATH  Google Scholar 

  18. Fryer, K., Halperin, I., ‘The von Neumann coordinatization theorem for complemented modular lattices’, Acta Sci. Math. Szeged 17 (1956), 203–249.

    MathSciNet  MATH  Google Scholar 

  19. Grätzer, G., Jbnsson, B., Lasker, H., ‘The amalgamation property in equational classes of modular lattices’, Pacific J. Math. 45 (1973), 507–524.

    MathSciNet  MATH  Google Scholar 

  20. Herrmann, C., Huhn, A., ‘Lattices of normal subgroups generated by frames’, Colloq. Sci. Janos Bolyai 14 (1975), 97–136.

    MathSciNet  Google Scholar 

  21. Hutchinson, G., ‘On the representation of lattices by modules’, Trans. Amer. Math. Soc. 209 (1975), 311–351.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hutchinson, G., ‘On classes of lattices representable by modules’, Proc. Univ. of Houston, Lattice Theory Conf., Houston (1973), 69–94.

    Google Scholar 

  23. Inaba, E., ‘On primary lattices’, J. Fac. Sci. Hokkaido Univ. 11 (1948), 39–107.

    MathSciNet  Google Scholar 

  24. Jbnsson, B., ‘Representations of complemented modular lattices’, Trans. Amer. Math. Soc. 97 (1960), 64–94.

    MathSciNet  Google Scholar 

  25. Jbnsson, B., ‘Modular lattices and Desargues theorem’, Math. Scand. 2 (1954), 295–314.

    MathSciNet  Google Scholar 

  26. Jónssen, B., Monk, G., ‘Representation of primary Arguesian lattices’, Pacific J. Math. 30 (1969), 95–139.

    MathSciNet  Google Scholar 

  27. Klingenberg, W., ‘Projektive Geometrien mit Homomorphismen’, Math. Annalen 132 (1956), 180–200.

    Article  MathSciNet  MATH  Google Scholar 

  28. Maeda, F., Kontinuierliche Geometrien, Springer Verl., Berlin (1958).

    Google Scholar 

  29. von Neumann, J., Continuous Geometry, Princeton Univ. Press, Princeton(1960).

    MATH  Google Scholar 

  30. Scoppola, C., ‘Sul reticolo dei sottogruppi di un gruppo abeliano senza torsione di rango diverso da 1: una caratterizzazione reticolare’, Rend. Sem. Mat. Univ. Padova 65 (1981), 205–221.

    MathSciNet  Google Scholar 

  31. Skornyakov, L., Complemented modular lattices and regular rings, Oliver and Boyd, Edinburgh (1964).

    MATH  Google Scholar 

  32. Stenström, B., Rings of quotients, Springer-Verl., Berlin (1975).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Brehm, U. (1985). Coordinatization of Lattices. In: Kaya, R., Plaumann, P., Strambach, K. (eds) Rings and Geometry. NATO ASI Series, vol 160. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5460-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5460-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8911-1

  • Online ISBN: 978-94-009-5460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics