Skip to main content

Implicit Plasma Simulation

  • Conference paper

Abstract

Implicit time integration methods have been used extensively in numerical modelling of slowly varying phenomena in systems that also support rapid variation. Examples include diffusion, hydrodynamics and reaction kinetics. This article discusses implementation of implicit time integration in plasma codes of the “particle-in-ce1l” family, and the benefits to be gained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. C. Adam, A. Gourdin Serveniere, A. B. Langdon, J. Comp. Phys. 47 (1982), 229.

    Article  ADS  MATH  Google Scholar 

  • D. C. Barnes, T. Kamimura, J.-N. LeBoeuf and T. Tajima, J. Comp. Phys. 52, 480 (1983).

    Article  ADS  MATH  Google Scholar 

  • C. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation, McGraw-Hill, New York, 1985.

    Google Scholar 

  • J. U. Brackbill and D. W. Forslund, J. Comp. Phys. 46 (1982), 271.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. U. Brackbill, D. W. Forslund, K. Quest and D. Winske, Phys. Fluids 27, 2682 (1984).

    Article  ADS  MATH  Google Scholar 

  • J. U. Brackbill and D. W. Forslund, ‘Simulation of low frequency, electromagnetic phenomena in plasmas’, in the volume Multiple Time Scales in the series Computational Techniques, Academic, 1985.

    Google Scholar 

  • O. Buneman, J. Comp. Phys. 1 (1967), 517.

    Article  ADS  MATH  Google Scholar 

  • B. I. Cohen, A. B. Langdon and A. Friedman, J. Comp. Phys. 46 (1982), 15.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • B. I. Cohen, A. B. Langdon and A. Friedman, J. Comput. Phys. 56 (1984), 51.

    Article  ADS  MATH  Google Scholar 

  • J. Denavit, J. Comp. Phys. 42 (1981), 337.

    Article  ADS  MATH  Google Scholar 

  • J. D. Denavit, ‘One-Dimensional Time-Implicit Hybrid Simulations’, Laser Program Annual Report-1982, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-80021-82 (1983), p. 3–50.

    Google Scholar 

  • D. W. Forslund and J. U. Brackbill, Phys. Rev. Lett. 48 (1982), 1614.

    Article  ADS  Google Scholar 

  • D. W. Forslund, K. Quest, J. U. Brackbill and K. Lee, J. Geophys. Rev. 89, 2142 (1984).

    Article  ADS  Google Scholar 

  • D. W. Hewett, J. Comput. Phys. 38, 378 (1980).

    Article  ADS  MATH  Google Scholar 

  • D. W. Hewett and A. B. Langdon, Laser Program Annual Report-1982, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-80021-84 (1985).

    Google Scholar 

  • A. B. Langdon and B. F. Lasinski, ‘Electromagnetic and Relativistic Plasma Simulation Models’, in Methods in Computational Physics, (B. Alder, S. Fernbach, and M. Rotenberg, Eds, Volume Ed. J. Killeen ), p. 327, Academic Press, New York, 1976.

    Google Scholar 

  • A. B. Langdon, B. I. Cohen and A. Friedman, J. Comp. Phys. 51 (1983), 107.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • A. B. Langdon, D. W. Hewett and A. Friedman, Laser Program Annual Report-1983, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-80021-83 (1984).

    Google Scholar 

  • A. B. Langdon and D. C. Barnes, ‘Direct Implicit Plasma Simulation’, in the volume Multiple Time Scales in the series Computational Techniques, Academic, 1985.

    Google Scholar 

  • R. J. Mason, J. Comp. Phys. 41 (1981), 233.

    Article  ADS  MATH  Google Scholar 

  • R. J. Mason, Phys. Rev. Lett. 47 (1981), 652.

    Article  ADS  Google Scholar 

  • R. J. Mason, ‘Hybrid and collisional implicit plasma simulation models’, in the volume Multiple Time Scales in the series Computational Techniques, Academic, 1985.

    Google Scholar 

  • C. W. Nielson and H. R. Lewis, ‘Particle Code Models in the Nonradiative Limit’, in Methods in Computational Physics, (B. Alder, S. Fernbach, and M. Rotenberg, Eds, Vol. Ed. J. Killeen), p. 367, Academic Press, N.Y., 1976.

    Google Scholar 

  • S. Fernbach, and M. Rotenberg, Eds, Vol. ed J. Killeen). p. 367 Academic Press, N.Y., 1976

    Google Scholar 

  • K. Quest, D. W. Forslund, J. U. Brackbill and K. Lee, Geophys. Research Lett. 10, 471 (1983).

    Article  ADS  Google Scholar 

  • H. Sakagami, K. Nishihara and D. Colombant, ‘Stability of Time-Filtering Particle Code Simulation’, Institute of Laser Engineering report ILE8117P, August 10, 1981.

    Google Scholar 

  • J. M. Wallace, J. U. Brackbill and D. W. Forslund, ‘An Implicit Moment Electromagnetic Plasma Simulation in Cylindrical Coordinates’, J. Comput. Phys., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Langdon, A.B. (1985). Implicit Plasma Simulation. In: Ashour-Abdalla, M., Dutton, D.A. (eds) Space Plasma Simulations. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5454-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5454-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8909-8

  • Online ISBN: 978-94-009-5454-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics