Skip to main content

Theoretical Models of Shock Waves in Molecular Clouds

  • Chapter
Molecular Astrophysics

Part of the book series: NATO ASI Series ((ASIC,volume 157))

Abstract

The important physical processes acting in shock waves in molecular clouds are discussed. The magnetic field plays an important role in determining the structure of a shock wave in molecular gas. Because of the low fractional ionization, the magnetic field lines, together with the electron-ion plasma, can “slip” through the neutral gas; this “magnetic-ion-slip” can result in shock structures which are qualitatively different from nonmagnetic shock waves. The molecular processes acting in shock waves are reviewed, with attention to molecular excitation and dissociation, and a few important chemical reaction channels. The infrared spectra of C-type shocks are discussed, and theoretical models are compared to observations (in the BN-KL region of the Orion Molecular Cloud) of emission lines from vibrationally and rot at ion ally-excited H2, and rotationally excited CO and OH. Theoretical shock modelling is currently hindered by uncertainties in various cross sections for collisional excitation; some of these uncertainties are pointed out in hopes of stimulating further theoretical or laboratory work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Draine, B. T. 1980, Ap. J., 241, pp. 1021–1038 (see also Ap. J., 246, p. 245[1981]).

    Article  ADS  Google Scholar 

  2. Draine, B. T., Roberge, W. G., and Dalgarno, A. 1983, Ap. J. 264, pp. 485–507 (DRD).

    Article  ADS  Google Scholar 

  3. Launay, J. M., and Roueff, E. 1977, Astr. Ap., 56, pp. 289–292.

    ADS  Google Scholar 

  4. Shull, J. M, and Beckwith, S. 1982, Ann. Rev. Astr. Ap., 20, pp. 163–190.

    Article  ADS  Google Scholar 

  5. Green, S. 1980, Ap. J. (Suppl.), 42, pp. 103–141.

    Article  ADS  Google Scholar 

  6. Hollenbach, D., and McKee, C. F. 1979, Ap. J. (Suppl.), 41, pp. 555–592.

    Article  ADS  Google Scholar 

  7. McKee, C. F., Storey, J. W. V., Watson, D. M., and Green, S. 1982, Ap. J., 259, pp. 647–656 (MSWG).

    Article  ADS  Google Scholar 

  8. DePristo, A. E., Augustin, S. D., Ramaswamy, R., and Rabitz, H. 1979, J. Chem,. Phys., 71, pp. 850-865.

    Article  ADS  Google Scholar 

  9. DePristo, A. E., Augustin, S. D., Ramaswamy, R., and Rabitz, H. 1979, J. Chem,. Phys., 71, pp. 850-865.

    Article  ADS  Google Scholar 

  10. Draine, B. T., and Roberge, W. G. 1982, Ap. J. (Letters), 259, pp. L91-L96.

    Article  ADS  Google Scholar 

  11. Dalgarno, A., and Roberge, W. G. 1979, Ap. J. (Letters), 233, pp. L25-L27.

    Article  ADS  Google Scholar 

  12. Roberge, W. G., and Dalgarno, A. 1982, Ap. J., 255, pp. 176–180.

    Article  ADS  Google Scholar 

  13. Lepp, S.. and Shull, J. M. 1983, Ap. J., 270, pp. 578-582.

    Article  ADS  Google Scholar 

  14. Drawin, H. W. 1968, Z. Phys., 211, pp. 404-417.

    Article  ADS  Google Scholar 

  15. Drawin, H. W. 1969, Z. Phys., 225, pp. 483-493.

    Article  ADS  Google Scholar 

  16. Hayden, H. C., and Utterback, N. G. 1964, Phys. Rev. A., 135, pp. 1575-1597.

    Article  ADS  Google Scholar 

  17. Van Zyl, B., and Utterback, N. G. 1969, Sixth Int. Conf. Phys. Electron. Atom. Collisions(Cambridge: MIT), p. 393.

    Google Scholar 

  18. Van Zyl, B., Le, T. Q., and Amme, R. C. 1981, J. Chem. Phys., 74, pp. 314–323.

    Article  ADS  Google Scholar 

  19. Iglesias, E. R., and Silk, J. P. 1978, Ap. J., 226, pp. 851–857.

    Article  ADS  Google Scholar 

  20. Elitzur, M., and Watson, W. D. 1980, Ap. J., 236, pp. 172–181.

    Article  ADS  Google Scholar 

  21. Hartquist, T. W., Oppenheimer, M., and Dalgarno, A. 1980, Ap. J., 236, pp. 182–188.

    Article  ADS  Google Scholar 

  22. Mitchell, G. F., and Deveau, T. J. 1982, in Regions of Recent Star Forma-Hem, ed. R. S. Roger and P. E. Dewdney (Dordrecht: Reidel), pp. 107–116.

    Google Scholar 

  23. Mitchell, G. F., and Deveau, T. J. 1983, Ap. J., 266, pp. 646–661.

    Article  ADS  Google Scholar 

  24. Mitchell, G. F. 1984, Ap. J. (Suppl.), 54, pp. 81–101.

    Article  ADS  Google Scholar 

  25. Dalgarno, A. 1985 (this volume).

    Google Scholar 

  26. Watson, D. M. 1982b, Ph. D. thesis, Univ. California, Berkeley.

    Google Scholar 

  27. Werner, M. W. 1982, in Symp. on the Orion Nebula to Honor Henry Draper, ed. A. E. Glassgold, P. J. Huggins, and E. L. Schucking, pp. 79–98.

    Google Scholar 

  28. Chernoff, D. F., Hollenbach, D. J., and McKee, C. F. 1982, Ap. J. (Letters), 259, pp. L97-L101.

    Article  ADS  Google Scholar 

  29. Beck, S. C., Lacy, J. H, and Geballe, T. R. 1979, Ap. J. (Letters), 234, pp. L213-L216.

    Article  ADS  Google Scholar 

  30. Knacke, R. F., and Young, E. 1981, Ap. J. (Letters); 249, pp. L65-L69.

    Article  ADS  Google Scholar 

  31. Beckwith, S., Persson, S. E., Neugebauer, G., and Becklin E. E. 1978, Ap. J., 227, pp. 436–440.

    Article  ADS  Google Scholar 

  32. Phillips, T. G., Huggins, P. J., Neugebauer, G., and Werner, M. 1977, Ap. J. (Letters), 217, pp. L161-L164.

    Article  ADS  Google Scholar 

  33. van Vliet, A. H. F., de Grauuw, Th., Lee, T. J., Lidholm, S., and v. d. Stadt, H. 1981, Astr. Ap., 101, pp. L1-L3.

    ADS  Google Scholar 

  34. Goldsmith, P. F., et al. 1981, Asp. (Letters), 243, pp. L79-L82.

    Article  ADS  Google Scholar 

  35. Stacey, G. J., Kurtz, N. T., Smyers, S. D., Harwit, M., Russell, R. R, and Melnick, G. 1982, Ap. J. (Letters), 257, pp. L37-L40.

    Article  ADS  Google Scholar 

  36. Storey, J. W. V., Watson, D. M., and Townes, C. H. 1981, Ap. J. (Letters), 244, pp. L27-L30.

    Article  ADS  Google Scholar 

  37. Watson, D. M., Storey, J. W. V., Townes, C. H., Haller, E. E., and Hansen, W. L. 1980, Asp. J. (Letters), 239, pp. L129-L132.

    Article  ADS  Google Scholar 

  38. Watson, D. M. 1982a, private communication.

    Google Scholar 

  39. Hollenbach, D., and Shull, J. M. 1977, Ap. J., 216, pp. 419–426.

    Article  ADS  Google Scholar 

  40. Kwan, J. 1977, Ap. J., 216, pp. 713–723.

    Article  ADS  Google Scholar 

  41. London, R., McCray, R., and Chu, S.-I. 1977, Ap. J., 217, pp. 442–447.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Draine, B.T. (1985). Theoretical Models of Shock Waves in Molecular Clouds. In: Diercksen, G.H.F., Huebner, W.F., Langhoff, P.W. (eds) Molecular Astrophysics. NATO ASI Series, vol 157. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5432-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5432-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8898-5

  • Online ISBN: 978-94-009-5432-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics