Skip to main content

Deterministic Design II: General Formulation

  • Chapter
The Assay of Spatially Random Material

Part of the book series: Mathematics and Its Applications ((MAIA,volume 20))

  • 148 Accesses

Abstract

The previous Chapter was devoted to developing the conceptual foundations of the deterministic design-analysis. The concept of relative mass resolution was introduced as a deterministic measure of performance. The convexity theorem established a simple analytic relation between the point-source response set and the complete response set. This Theorem leads to the conclusion that the relative mass resolution is precisely equal to the expansion of the complete response set. Furthermore, an efficient computerizable min-max algorithm was established which enables evaluation of the expansion of the complete response set, while requiring explicit knowledge only of the point-source response set. Finally, the concept of relative mass resolution was extended to include the statistical uncertainty of the measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Kehler, Accuracy of Two‐Phase Flow Measurement by Pulsed Neutron Activation Techniques, in Multiphase Transport Fundamentals, Reactor Safety Applications, Vol. 5, p.2483, Hemisphere Pub., 1980.

    Google Scholar 

  2. M. Perez‐Griffo et al, Basic Two‐Phase Flow Measurements Using N‐16 Tagging techniques, NUREG/CR‐0014, Vol. 2, pp. 923, 1980.

    Google Scholar 

  3. P. B. Barrett, An Examination of the Pulsed‐Neutron Activation Technique for Fluid Flow Measurements, Nucl. Eng. Design, 74: 183 – 92, (1982).

    Article  Google Scholar 

  4. P. A. M. Dirac, The Principles of Quantum Mechanics, Cambridge Univ. Press, 1958.

    MATH  Google Scholar 

  5. Y. Ben‐Haim, Convex Sets and Nondestructive Assay, S. I. A. M. J. Alg. Disc. Methods, accepted for publication.

    Google Scholar 

  6. For sets in Euclidean space, compactness and closed‐bounded‐ ness are equivalent. Compactness is however a much more general concept, whose properties we shall exploit.

    Google Scholar 

  7. See ref. [7.2] of Chapter 2, pl45.

    Google Scholar 

  8. A. Friedman, Foundations of Modern Analysis, Dover 1982.

    MATH  Google Scholar 

  9. See section 5.3 of ref. [7.2] of Chapter 2.

    Google Scholar 

  10. M. H. Dickerson, K. T. Foster and R. H. Gudiksen, Experimental and Model Transport and Diffusion Studies in Complex Terrain, 29th Oholo Conf. on Boundary Layer Structure and Modelling, Zichron Ya’acov, Israel, March 1984.

    Google Scholar 

  11. See refs. [7] and [12] of Chapter 1 and

    Google Scholar 

  12. R. E. Goans and G. G. Warner, Monte Carlo Simulation of Photon Transport in a Heterogeneous Phantom ‐I: Applications to Chest Counting of Pu and Am, Health Physics, 37: 533 – 42 (1979).

    Article  Google Scholar 

  13. See ref. [7] of Chapter 1.

    Google Scholar 

  14. C. D. Berger, R. E. Goans and R. T. Greene, The Whole Body Counting Facility at Oak Ridge National Laboratory: Systems and Procedure Review, ORNL/TM‐7477 (1980).

    Google Scholar 

  15. The advantages of employing a high energy‐resolution germanium detector are explored in

    Google Scholar 

  16. C. D. Berger and R. E. Goans, A comparison of the Nal‐ Csl Phoswich and a Hyperpure Germanium Detector Array for In‐VivoDetection of the Actinides, Health Physics, 40: 535 – 42 (1981).

    Article  Google Scholar 

  17. J. D. Brain and P. A. Valberg, Deposition of Aerosol in The Respiratory Tract, Amer. Rev. Respiratory Disease, 120: 1325 – 73 (1979).

    Google Scholar 

  18. C. P. Yu and C. K. Diu, Total and Regional Deposition of Inhaled Aerosols in Humans, J. Aerosol Sci., 14: 599 – 609 (1983).

    Article  Google Scholar 

  19. J. D. Brain et al, Pulmonary Distribution of Particles Given by Intratracheal Instillation or by Aerosol Inhalation, Environmental Research, 11: 13 – 33 (1976).

    Article  Google Scholar 

  20. S. M. Morsy et al, A Detector of Adjustable Response for the Study of Lung Clearance, Health Physics, 32: 243 – 51 (1977).

    Article  Google Scholar 

  21. I. S. Boyce, J. F. Cameron and D. Pipes, Proc. Symp. on Nuclear Techniques in the Basic Metal Industries, vol.1, pl55, IAEA, 1973.

    Google Scholar 

  22. R. Bevan, T. Gozani, and E. Elias, Nuclear Assay of Coal, Electric Power Research Institute report EPRI‐FP‐989, vol. 6, 1979.

    Google Scholar 

  23. E. Elias, W. Pieters and Z. Yom‐Tov, Accuracy and Performance Analysis of a Nuclear Belt Weigher, Nucl. Instr. Meth., 178: 109 – 115 (1980).

    Article  Google Scholar 

  24. J. B. Cummingham et al, Bulk Analysis of Sulfur, Lead, Zinc and Iron in Lead Sinter Feed Using Neutron Inelastic Scatter Gamma‐Rays, Int. J. Appl. Rad. Isot., 35: 635 – 43 (1984).

    Article  Google Scholar 

  25. See refs. cited in ref. [16.1] of Chapter 1 and:

    Google Scholar 

  26. J. A. Oyedele, Spatial Effects in Radiation Diagnosis of Two‐Phase Systems, Int. J. Appl. Rad. Isot., 35: 865 – 73 (1984).

    Article  Google Scholar 

  27. T. A. Boster, Source of Error in Foil Thickness Calibration by X‐ray Transmission, J. Appl. Phys., 44: 3778 – 81 (1973).

    Article  Google Scholar 

  28. J. A. Oyedele, The Bias in On‐Line Thickness Calibration by Radiation Transmission, Nucl. Instr. Meth., 217: 507 – 14 (1983).

    Article  Google Scholar 

  29. H. Harmuth, Transmission of Information by Orthogonal Functions, Springer‐Verlag, 1972.

    MATH  Google Scholar 

  30. S. Tzafestas and N. Chrysochoides, Nuclear Reactor Control Using Walsh Function Variational Synthesis, Nucl. Sci. Eng., 62: 763 – 70 (1977).

    Google Scholar 

  31. Thorough expositions of dynamic programming may be found in many sources, including the following.

    Google Scholar 

  32. R. Bellman, Dynamic Programming, Princeton University Press, 1957.

    MATH  Google Scholar 

  33. R. Bellman, Introduction to the Mathematical Theory of Control Processes, Vol I, Academic Press, 1967.

    MATH  Google Scholar 

  34. R. Bellman, Introduction to Matrix Analysis, McGraw‐Hill, 1970.

    MATH  Google Scholar 

  35. R. Bellman, Methods of Nonlinear Analysis, Academic Press, 1973.

    MATH  Google Scholar 

  36. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Ben-Haim, Y. (1985). Deterministic Design II: General Formulation. In: The Assay of Spatially Random Material. Mathematics and Its Applications, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5422-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5422-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8893-0

  • Online ISBN: 978-94-009-5422-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics