Skip to main content

Hugoniot of Water Ice

  • Chapter
Book cover Ices in the Solar System

Part of the book series: NATO ASI Series ((ASIC,volume 156))

Abstract

Hugoniot data for water ice are available for pressures ranging from about 150 MPa to about 50 GPa from initial states near 260 K. Limited data on porous ice (snow) at the same initial temperatures are available from 3.5 to 38 GPa and initial densities of 600 and 350 kg/m3. At low stresses the shock velocity is a very complicated function of particle velocity due to elastic propagation, yielding and several possible phase changes. The Hugoniot elastic limit (HEL) of ice at these temperatures ranges from 150 to 300 MPa with the elastic waves travelling at about 3700 m/s. The mean stress at the HEL ranges from about 100 MPa to almost 200 MPa. Comparison with strength measurements at lower strain rate indicates that failure at the HEL probably involves fracture and is almost independent of both temperature and strain rate. Shocks with amplitudes between the HEL and about 500 MPa produce partial phase transformation either to melt or another solid phase. Above 500 MPa, the ice compression curve bends over very sharply indicating transition of large fractions of the material to the solid high pressure phases. By 690 MPa the transition to ice VI is virtually complete. Ice VI has been reported between 690 MPa and 2 GPa, and possibly as high as 3.7 GPa. Melting on the Hugoniot is definitely complete below 10 GPa. Above that level, the ice data are fairly well-fit by a linear relation between shock and particle velocity: D(km/s) = 1. 79 + l.42u. However, a quadratic form fits the data better: D(km/s) = 1.32 + l.68u − 0.035u2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, B. A., L. A. Soderblom, T. V. Johnson, A. P. Ingersoll, S. A. Collins, E. M. Shoemaker, G. E. Hunt, H. Masursky, M. H. Carr, M. E. Davies, A. F. Cook, II, J. Boyce, G. E. Danielson, T. Owen, C. Sagan, R. F. Beebe, J. Veverka, R. G. Strom, J. F. McCauley, D. Morrison, G. A. Brlggs and V. A. Soumi, 1979a, The Jupiter system through the eyes of Voyager 1, Science 204, pp. 951–971.

    Article  ADS  Google Scholar 

  2. Smith, B. A., L. A. Soderblom, R. F. Beebe, J. Boyce, G. A. Briggs, M. H. Carr, S. A. Collins, A. F. Cook, II, G. E. Danielson, M. E. Davies, G. E. Hunt, A. P. Ingersoll, T. V. Johnson, H. Masursky, J. F. McCauley, D. Morrison, T. Owen, C. Sagan, E. M. Shoemaker, V. A. Soumi, R. G. Strom and J. Veverka, 1979b, The Galilean satellites and Jupiter: Voyager 2 imaging science results, Science 206, pp. 927–950.

    Article  ADS  Google Scholar 

  3. Smith, B. A., L. A. Soderblom, R. Beebe, J. Boyce, G. Briggs, A. Bunker, S. A. Collins, C. J. Hansen, T. V. Johnson, J. L. Mitchell, R. J. Terrill, M. Carr, A. F. Cook II, J. Cuzzi, J. B. Pollack, G. E. Danielson, A, Ingersol1, M. E. Davies, G. E. Hunt, H. Masursky, E. Shoemaker, D. Morrison, T. Owen, C. Sjogren, J. Veverka, R. Strom and V. E. Suomi, 1980, Encounter with Saturn: Voyager 1 imaging science results, Science 212, pp. 163–191.

    Article  ADS  Google Scholar 

  4. Smith, B. A., L. A. Soderblom, R. Batson, P. Bridges, J. Inge, H. Masursky, E. Shoemaker, R. Beebe, J. Boyce, G. Briggs, A. Bunker, S. A. Collins, C. J. Hansen, T. V. Johnson, J. L. Mitchell, R. J. Terrill, F. Cook, II, J. Cuzzi, J. B. Pollack, G. E. Danielson, D. Morrison, T. Owen, C. Sagan, J. Veverka, R. Strom and V. E. Suomi, 1982, A new look at the Saturnian system: The Voyager 2 images, Science 215, pp. 504–537.

    Article  ADS  Google Scholar 

  5. Kawakami, S., H. Mizutani, Y. Takagi, M. Ka to and M. Kumazawa, Impact experiments on ice, J. Geophys. Res. 88, pp. 5806–5814.

    Google Scholar 

  6. Gaffney, E. S., and D. L. Matson, 1980, Water ice polymorphs and their significance on planetary surfaces, Icarus 44, pp. 511–519.

    Article  ADS  Google Scholar 

  7. Duvall, G. E., and G. R. Fowles, 1963, Shock Waves, Ch. 9 of R. S. Bradley, ed., High Pressure Physics and Chemistry 2, Academic, New York.

    Google Scholar 

  8. Al’tshuler, L. V., 1965, Use of shock waves in high-pressure physics, Sov. Phys. Usp. 8, pp. 52-91, (originally published Usp. Fiz. Nauk 85, pp. 197–258, February, 1965 ).

    Google Scholar 

  9. Duvall, G. E., 1968, Shock Waves in Solids, pp. 19-29 in, M. French and N. M. Short, eds., Shock Metamorphism of Natural Materials, Mono Book Corp., Baltimore.

    Google Scholar 

  10. Duvall, G. E., and R. A. Graham, 1977, Phase transitions under shock wave loading, Rev. Mod. Phys. 49, pp. 523–579.

    Article  ADS  Google Scholar 

  11. Hugoniot, H., 1885, Sur la propagation du mouvement dans les corps, et specialement dans les gaz parfaits, Paris Acad. Sci., C. R. 101, pp. 794–796.

    Google Scholar 

  12. Hugoniot, H., 1887, Sur la propagation du mouvement dans les corps, et specialement dans les gaz parfaits, J. Ec. Polyt. Paris 57, pp. 3–97.

    Google Scholar 

  13. Hugoniot, H., 1889, Sur la propagation du mouvement dans les corps, et specialement dans les gaz parfaits, J. Ec. Polyt. Paris 58, pp. 1–125.

    Google Scholar 

  14. Fowles, G. R., and R. F. Williams, 1970, Plane stress wave propagation in solids, J. Appl. Phys. 41, pp. 360–363.

    Article  ADS  Google Scholar 

  15. Seaman, L., 1974, Lagrangian analysis for multiple stress or velocity gages in attenuating waves, J. Appl. Phys. 45, pp. 4303–4314.

    Article  ADS  Google Scholar 

  16. Larson, D. B., G. D. Bearson and J. R. Taylor, 1973, Shock wave studies of ice and two frozen soils, pp. 318–325 in Permafrost: The North American Contribution to the Second International Conference, Nat. Acad. Sci, Washington.

    Google Scholar 

  17. Larson, D. B., G. D. Bearson and J. R. Taylor, 1973, Shock wave studies of ice and two frozen soils, pp. 318–325 in Permafrost: The North American Contribution to the Second International Conference, Nat. Acad. Sci, Washington.

    Google Scholar 

  18. Fowles, G. R., 1973, Experimental technique and instrumentation, Ch. 8, pp. 405–480, P. C. Chou and A. K. Hopkins, Dynamic Response of Materials to Intense Impulsive Loading, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio.

    Google Scholar 

  19. Graham, R. A., and J. R. Asay, 1978, Measurement of wave profiles in shock loaded solids, High Temp.-High Press. 10, pp. 355–390.

    Google Scholar 

  20. Minshall, S., 1955, Properties of elastic and plastic waves determined by pin contactors and crystals, J. Appl. Phys. 26, pp. 463–469.

    Article  ADS  Google Scholar 

  21. Coleburn, N. L., 1964, Compressibility of pyrolyttc graphite, J. Chem. Phys. 40, pp. 71–77.

    Article  ADS  Google Scholar 

  22. Gaffney, E. S., and T. J. Ahrens, 1980, Identification of ice VI on the Hugoniot of ice Ih, Geophys. Res. Lett. 7, pp. 407–409.

    Article  ADS  Google Scholar 

  23. Anderson, G. D., 1968, The Equation of State of Ice and Composite Frozen Material, US Army Cold Reg. Res. and Eng. Lab. Res. Rept. RR-257, Hanover, NH, ( June 1968 ).

    Google Scholar 

  24. Doran, D. G., 1963, in High Pressure Measurement, ed. by A. A. Giardini and E. C. Lloyd, Butterworths, Washington, p. 59.

    Google Scholar 

  25. Ahrens, T. J., W. H. Gust and E. B. Royce, 1968, Material strength effect in the shock compression of alumina, J. Appl. Phys. 39, pp. 4610–4616.

    Article  ADS  Google Scholar 

  26. Zaitsev, V. M., P. F. Pokhii and K. K. Shvedov, 1960, An electromagnetic method for measuring the velocity of detonation products, Doklady Akad.Nauk SSSR 132(6), pp. 529–530 (originally published as Doklady Akad.Nauk SSSR 132 (6) pp. 1339–1340 ).

    Google Scholar 

  27. Keough, D. D., and J. Y. Wong, 1970, Variation of the piezoresistance coefficient of manganin as a function of deformation, J. Appl. Phys. 41, pp. 3508–3515.

    Article  ADS  Google Scholar 

  28. Grady, D. E., and MJ. Ginsberg, 1978, Piezoresistive effects in ytterbium stress transducers, J. Appl. Phys. 48, pp. 2179–2181.

    Article  ADS  Google Scholar 

  29. Krehl, P., 1978, Measurement of low shock pressures with piezoresistive carbon gauges, Rev. Sci. Instr. 49, pp. 1477–1484.

    Article  ADS  Google Scholar 

  30. Gaffney, E. S., 1973, Study of the Nature of Shock Waves in Frozen Earth Materials, Systems Science and Software Report SSS-R-73-1557, La Jolla.

    Google Scholar 

  31. Bakanova, A. A., V. N. Zubarev, Yu. N. Sutulov and R. F. Trunin, 1975, Thermodynamic properties of water at high temperatures and pressures, Sov. Phys.-JETP 41, pp. 544–548 (originally published Zh. Eksp. Teor. Fiz. 68, pp. 1099–1107 ).

    ADS  Google Scholar 

  32. Gaffney, E. S., 1979, Equation of state of ice and frozen soils, Lunar Plan. Sci. 10, pp. 416–418.

    ADS  Google Scholar 

  33. Nakano, Y., and N. H. Froula, 1973, Sound and shock transmission in frozen soils, pp. 359–369 in Permafrost: The North American Contribution to the Second International Conference, Nat. Acad. Sci., Washington.

    Google Scholar 

  34. Louie, N. A., 1968, Equation of State of Frozen Material, Shock Hydrodynamics Report SH2155-08, Sherman Oaks, CA (Feb 1968 ).

    Google Scholar 

  35. Higashi, A., and N. Sakai, 1961, Movement of small angle boundary of ice crystal, J. Phys. Soc. Japan 16, pp. 2359–2360.

    Article  ADS  Google Scholar 

  36. Bartlett, J. T., and C. J. Readings, 1968, Some optical effects in deformed single crystals of ice, IAHS Publ. 79, pp. 316–325.

    Google Scholar 

  37. Higashi, A., S. Mae, and A. Fukuda, 1968, Strength of ice single crystals in relation to the dislocation structure, Trans. Japan Inst. Metals 9, pp. 784–789.

    Google Scholar 

  38. Dantl, G., 1968, Die elastichen Moduln von Eis-Einkrystallen, Phys. Condens. Mater. 7, pp. 390–397.

    ADS  Google Scholar 

  39. Simmons, G., 1965, Single crystal elastic constants and calculated aggregate properties, J. Grad. Res. Center, So. Meth. U. 34, 1–269.

    Google Scholar 

  40. Kirby, S. H., W. B. Durham and H. C. Heard, 1985, Rheologies of H2O ices Ih, II, and III at high pressures: A progress report.

    Google Scholar 

  41. Graham, R. A., and W. P. Brooks, 1971, Shock-wave compression of sapphire from 15 to 420 kbar. The effects of large anisotropic compressions, J. Phys. Chem. Solids 32, pp. 2311–2330.

    Article  ADS  Google Scholar 

  42. Wood, D. S., 19 52, On longitudinal plane waves of elastic-plastic strain in solids, J. Appl. Mech. 19, pp. 521–525.

    Google Scholar 

  43. Fowles, G. R., 1961, Shock wave compression of hardened and annealed 2024 aluminum, J. Appl. Phys. 32, pp. 1475–1487.

    Article  ADS  Google Scholar 

  44. Wackerle, J., 1962, Shock-wave compression of quartz, J. Appl. Phys. 33, pp. 922–937.

    Article  ADS  Google Scholar 

  45. Gaffney, E. S., 1975, Hugoniot elastic limit and phase changes in ice I, Bull. Amer. Phys. Soc. 20, p. 1514.

    Google Scholar 

  46. Rice, M. H., and J. M. Walsh, 1957, Equation of state of water to 250 kilobars, J. Chem. Phys. 26, pp. 824–830.

    Article  ADS  Google Scholar 

  47. Pistorius, C. W. F. T., E. Rapoport and J. B. Clark, 1968, Phase diagrams of H20 and D2O at high pressures, J. Cheta. Phys. 48, pp. 5509–5514.

    Article  ADS  Google Scholar 

  48. Walsh, J. M., and M. H. Rice, 1957, Dynamic compression of liquids from measurements on strong shock waves, J. Chem. Phys. 26, pp. 815–823.

    Article  ADS  Google Scholar 

  49. Burnham, C. W., J. R. Holoway and N. F. Davis, 1969, Thermodynamic properties of water to °C and 10,000 bars, Geol. Soc. Am., Spec. Paper 132, 96 p.

    Google Scholar 

  50. Hobbs, P. V., 1974, Ice Physics, Clarendon, Oxford, 837 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Gaffney, E.S. (1985). Hugoniot of Water Ice. In: Klinger, J., Benest, D., Dollfus, A., Smoluchowski, R. (eds) Ices in the Solar System. NATO ASI Series, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5418-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5418-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8891-6

  • Online ISBN: 978-94-009-5418-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics