Skip to main content

Subsurface Ice and Permafrost on Mars

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 156))

Abstract

Terrestrial permafrost varies widely in its physical and mechanical properties and behavior. Ice content, for example, may range from 0 to 100 % by volume. The types of subsurface ice are numerous and the crystal structure of terrestrial subsurface ice is variable. Most subsurface ice is hexagonal, Ice-I; clathrate structures are known, however. The ice content of permafrost is only a fraction, albeit the predominant one, of the water present. A significant portion of the water present exists in an unfrozen state and is distributed throughout the pore space and in interfacial areas. The proportion of ice to unfrozen water varies, in a characteristic manner, with temperature and solute concentration. These basic facts are important In determining the strength and deformation properties of permafrost and also its hydrological and electrical properties. Reliable relationships among these properties are derivable from basic thermodynamic theory and from empirical relationships recently established on the basis of laboratory and field data.

Permafrost exists at all latitudes on Mars and subsurface ice probably is abundant. The temperatures and pressures characteristic of each location or region determine, to a large extent, the depth and distribution of permafrost. Together with ground water salinity, they control the ice content, strength and deformation characteristics, in addition to other physical and electrical properties of local permafrost. Calculations based on the Viking Mission Data indicate that permafrost thicknesses range from about 3.5 km at the equator to approximately 8 km in the polar regions. The depths to the bottom of Martian permafrost are more than three times the depth characteristic of permafrost in terrestrial polar locations.

Martian permafrost, in general, is much colder than terrestrial permafrost. Consequently, the proportion of unfrozen water to ice generally is much lower. This, however, probably is somewhat offset by a significantly higher salinity of the Martian permafrost. The combination of low temperatures and great thicknesses of Martian permafrost, coupled with the low atmospheric pressure and very small snowfall, enhance the stability of the Martian surface. The “active layer” on Mars is extremely thin compared to that of terrestrial permafrost, making Martian permafrost more resistant to deformation and abrasion than is the case on Earth. The occurrence, quantities and behavior of subsurface ice, currently a matter of speculation and conjecture, is important in many respects. Its determination has been an objective of high priority in the exploration of Mars.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sinton, V. M. and Strong, J. (1960). Radiometric Observations of Mars. Astrophys. J., 131, pp. 459 - 469.

    Article  ADS  Google Scholar 

  2. Leighton, R. B., and Murray, B. C. (1966). Behavior of Carbon Dioxide and other Volatiles on Mars. Science, 84, pp. 136 - 144.

    Article  ADS  Google Scholar 

  3. Morrison, D., Sagan, C. and Pollack, J. B. (1969). Martian Temperatures and Thermal Properties. Icarus, 11, pp. 36 - 45.

    Article  ADS  Google Scholar 

  4. Neugebauer, G., Munch, C., Chase Jr., S. C., Hatzenbeler, H., Miner, E. and Schofield, D. (1969). Mariner 1969: Preliminary Results of the Infrared Radiometer Experiment. Science, 166, pp. 98 - 99.

    Article  ADS  Google Scholar 

  5. Biemann, K., Oro, J., Toulmin, III, P., Orgel, L. E., Nier, A. 0., Anderson, D. M., Simmonds, P. G., Flory, D., Diaz, A. V., Rushneck, D. R., Biller, J. E., and Lafleur, A. L. (1977). The Search for Organic Substances and Inorganic Volatile Compounds in the Surface of Mars. Journal of Geophysical Research, 82, pp. 4641 - 4658.

    Article  ADS  Google Scholar 

  6. Anderson, D. M. (1978). Water in the Martian Regolith. Comparative Planetology, Academic Press, pp. 219 - 224.

    Google Scholar 

  7. Farmer, C. B., Davis, D. W., Holland, A. L., LaPort, D. D., and Doms, P. E. (1977). Mars: Water Vapor Observations from the Viking Orbiters. Journal of Geophysical Research, 82, pp. 4225 - 4248.

    Article  ADS  Google Scholar 

  8. Farmer, C. B. and Doms, P. E. (1979). Global Seasonal Variations of Water Vapor on Mars and the Implications for Permafrost. Journal of Geophysical Research, 84, pp. 2881 - 2888.

    Article  ADS  Google Scholar 

  9. Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., Palluconi, F. D. (1977). Thermal and Albedo Mapping of Mars During the Viking Primary Mission, Journal of Geophysical Research, 84, pp. 4249 - 4291.

    Article  ADS  Google Scholar 

  10. Murray, B. C. and Malin, M. C. (1973). Polar Volatiles on Mars — Theory Versus Observation. Science, 182, pp. 437 - 443.

    Article  ADS  Google Scholar 

  11. Cutts, J. A., Blasius, K. R., Briggs, G. A., Carr, M. H., Greeley, R., and Masursky, H. (1976). North Polar Region of Mars: Imaging Results From Viking 2. Science, 194, pp. 1329 - 1337.

    Article  ADS  Google Scholar 

  12. Miller, S. L., and Smythe, W. D. (1970). Carbon Dioxide Clathrate in The Martian Ice Cap. Science, 170, pp. 531 - 533.

    Article  ADS  Google Scholar 

  13. Judge, A. (1982). Natural Gas Hydrates in Canada. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, pp. 320 - 328.

    Google Scholar 

  14. Weaver, J. S. and Stewart, J. M. (1982). In Situ Hydrates Under the Beaufort Sea Shelf. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, pp. 312 - 319.

    Google Scholar 

  15. Makogon, Y. F. (1982). Perspectives of the Development of Gas-Hydrate Deposits. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, pp. 299 - 304.

    Google Scholar 

  16. Kvenvolden, K. A. (1982). Occurrence and Origin of Marine Gas Hydrates. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, PP. 305 - 311.

    Google Scholar 

  17. Rossbacker, L. A. and Judson, J. (1981). Ground Ice on Mars: Inventory, Distribution, and Resulting Landforms. Icarus, 45, pp. 39 - 59.

    Article  ADS  Google Scholar 

  18. Toksoz, M. N. and Hsui, A. T. (1978). Thermal History and Evolution of Mars. Icarus, 34, pp. 537 - 547.

    Article  ADS  Google Scholar 

  19. Anderson, D. M., Gatto, L. W. and Ugolini, F. (1973). An Examination of Mariner 6 and 7 Imagery for Evidence of Permafrost Terrain on Mars. “International Conference on Permafrost, 2’d Yakutsk, Siberia, N. American Contribution”. National Academy of Science Pub., pp. 449 - 508.

    Google Scholar 

  20. Gatto, L. W. and Anderson, D. M. (1975). Alaskan Thermokarst Terrain and Possible Martian Analog. Science 188, no. 4185, pp. 255 - 257.

    Article  ADS  Google Scholar 

  21. Coradini, M. and Flaraini, E. (1979). A Thermodynamical Study of the Martian Permafrost. Journal of Geophysical Research, 84, pp. 8115 - 8130.

    Article  ADS  Google Scholar 

  22. Fanale, F. P., Salvail, J. R., Banerdt, W. B. and Saunders, R. J. (1982). Mars: The Regolith-Atmosphere-Cap System and Climate Change. Icarus, 50, pp. 381 - 407.

    Article  ADS  Google Scholar 

  23. Hosier, C. L., Jenson, D. C. and Goldschlak, L. (1957). On the Aggregation of Ice Crystals to Form Snow. J. Meteorol., 14, pp. 415 - 420.

    Article  Google Scholar 

  24. Jellinek, H. H. G. (1967). Liquid-Like (Transition) Layer on Ice. J. Colloid Interface Sci., 25, pp. 192 - 205.

    Article  Google Scholar 

  25. Jellinek, H. H. G. and Ibrahim, S. H. (1967). Sintering of Powdered Ice. J. Colloid Interface Sci., 25, pp. 245 - 254.

    Article  Google Scholar 

  26. Hobbs, P. V. and Mason, B. J. (1964). The Sintering and Adhesion of Ice. Phil. Mag., 9, pp. 181 - 197.

    Article  ADS  Google Scholar 

  27. Anderson, D. M. and Morgenstern, N. R. (1973). Physics, Chemistry and Mechanics of Frozen Ground. “International Conference on Permafrost, 2’d Yakutsk, Siberia, N. American Contribution”. National Academy of Sciences Pub., pp. 257 - 288.

    Google Scholar 

  28. Anderson, D. M. (1967). The Interface Between Ice and Silicate Surfaces. Journal of Colloid and Interface Science, 25, pp. 174 - 191.

    Article  Google Scholar 

  29. Anderson, D. M. and Tice, A. R. (1980). Low Temperature Phase Changes in Montmori1lonite and Nontronite at High Water Contents and High Salt Contents. Cold Regions Science and Technology, 3, pp. 139 - 144.

    Article  Google Scholar 

  30. Andersland, O. B. and Anderson, D. M. (1978). Geotechnical Engineering for Cold Regions. McGraw-Hill.

    Google Scholar 

  31. Michel, B. (1977). A Mechanical Model of Creep of Poiycrystal1ine Ice. Canadian Geotechnical Journal, 15, pp. 155 - 170.

    Article  Google Scholar 

  32. Pusch, R. (1980). Creep of Frozen Soil, A Preliminary Physical Interpretation in “Proceedings Second International Symposium on Ground Freezing.” Norwegian Institute of Technology, Trondheim, Norway, pp. 190 - 201.

    Google Scholar 

  33. Steinemann, S. (1958). Experimentelle Untersuchuangen zur Plastizitat von Eis. Beitrage zur Geologie der Schweiz. Hydrologie No. 10. Kommissionsverlag Kummerly amp; Frey Ag., Geographischer Verlag, Bern.

    Google Scholar 

  34. Gold, G. W. (1960). The Cracking Activity in Ice During Creep. Can. J. Phys., 38, pp. 1137 - 1148.

    Article  ADS  Google Scholar 

  35. Ting, J. M. and Martin, R. T. (1979). Application of the Andrade Equation to Creep Data for Ice and Frozen Soil. Cold Regions Sci. and Technology, 1, pp. 29 - 36.

    Article  Google Scholar 

  36. Sayles, F. H. (1966). Low Temperature Soil Mechanics. U.S. Army Cold Reg. Res. Eng. Lab. Tech. Note, Hanover, N. H.

    Google Scholar 

  37. Wolfe, L. H. and Thieme, J. O. (1967). Physical and Thermal Properties of Frozen Soil and Ice. Soc. Pet. Eng. J., 4, pp. 67 - 72.

    Google Scholar 

  38. Butkovich, T. R. (1954). Ultimate Strength of Ice. U.S. Army Res. Rep. 11.

    Google Scholar 

  39. Banin, A. and Anderson, D. M. (1974). Effects of Salt Concentration Changes During Freezing on the Unfrozen Water Content of Porous Materials. J. Water Resources Research, 10, pp. 124 - 128.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Anderson, D.M. (1985). Subsurface Ice and Permafrost on Mars. In: Klinger, J., Benest, D., Dollfus, A., Smoluchowski, R. (eds) Ices in the Solar System. NATO ASI Series, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5418-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5418-2_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8891-6

  • Online ISBN: 978-94-009-5418-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics