Skip to main content

The Sublimation Temperature of the Cometary Nucleus: Observational Evidence for H2O Snows

  • Chapter
Ices in the Solar System

Part of the book series: NATO ASI Series ((ASIC,volume 156))

Abstract

The sublimation temperature of the cometary nucleus essentially depends on the vapor pressure and the latent heat of the most volatile material available in abundance at the surface of the nucleus. This sublimation temperature sets in turn the characteristic distance ro separating the sublimation steady state (small dependence on distance) from the radiation steady state (steep dependence on distance). ro can therefore be used, not only as a measure of the surface temperature of the nucleus, but also as an identification of the nature of the prevailing snow. Three techniques to measure ro are described here. Two have given significant results because they can cover large ranges of distances: The dependence on distance of the Non Gravitational Forces suggests that the short period comets f sublimations are controlled by water snow only; the light curves of “new” comets concur to the same conclusion. Among all the comets studied so farnone seems to be controlled by anything more volatile than water snow or ice. The large production rates of H and OH observed in cometary atmospheres suggest that they come from the dissociation of H2O in the vapor state. The theory of vaporization only is able to close the gap: it concludes that this water vapor was indeed released by the sublimation of water ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A’Hearn, M. F. and Millis, R. L., 1980, Abundance Correlations among Comets, Astron. J. 85, 1528; erratum 86, 802.

    Article  Google Scholar 

  • A’Hearn, M. F., Millis, R. L. and Birch, P. V., 1981, Comet Bradfield, the Gassiest Comet?, Astron. J. 86, 1559.

    Article  ADS  Google Scholar 

  • A’Hearn, M. F., Millis, R. L. and Thompson, D. I., 1983, The Disappearance of OH from Comet p/Encke; Icarus, 55, 250.

    Article  ADS  Google Scholar 

  • Bobrovnikoff, N. T., (1941) Investigations on the Brightness of Comets I; Contr. Perkins Obs. No. 15.

    Google Scholar 

  • Bobrovnikoff, N. T. (1942) Investigations on the Brightness of Comets II; Contr. Perkins Obs. No. 16.

    Google Scholar 

  • Cochran, A. L., 1982, The Chemical Evolution of the Coma of Comet p/Stefan-Oterma; Univ. of Texas, Publ. Astron. No. 21.

    Google Scholar 

  • Delsemme, A. H., 1972, Vaporization Theory and Non-Gravitational Forces in Comets, in “On the Origin of the Solar System”, ed. H. Reeves, publ. CNRS Paris, pp. 305–310.

    Google Scholar 

  • Delsemme, A. H., 1975, Physical Interpretation of the Brightness Variation of Comet Kohoutek, p. 195 in “Comet Kohoutek”, ed. Gilmer, A. G., publ. NASA SP-355, Washington, D.C.

    Google Scholar 

  • Delsemme, A. H., 1983, Ice in Comets; J. Physical Chem. 87, 4214.

    Article  ADS  Google Scholar 

  • Delsemme, A. H., Miller, D. C., 1971, Physico-Chemical Phenomena in Comets III: Planet. Space Sci., 19, 1229.

    Article  ADS  Google Scholar 

  • Delsemme, A. H., Rud, D. A., 1973, Albedos and Cross Sections for the Nuclei of Comets 1969 IX, 1970 II and 1971 I; Astron. Astrophys. 28, 1.

    ADS  Google Scholar 

  • Delsemme, A. H., Swings, P., 1952, Hydrates de gaz dans les noyaux cometaires et les grains interstellaires, Annales Astrophys, 15, 1.

    ADS  Google Scholar 

  • Festou, M. C., Feldman, P. D., 1981, The Forbidden Oxygen Lines in Comets; Astron. Astrophys. 103, 154.

    ADS  Google Scholar 

  • Finston, M. L., Probstein, R. F., 1968, A Theory of Dust Comets I and II, 154, 327 and 353.

    Google Scholar 

  • Hellmich, R., 1981, Influence of Radiation Transfer in Cometary Dust Halos on the Production Rate of Gas and Dust; Astron. Astrophys. 93, 341.

    ADS  Google Scholar 

  • Keller, H. U., 1979, Feedback of the Dust Coma on the Evaporation Process, p. 57 in Proc. Comet Halley Micrometeoroid Hazard Workshop, ed. N. Longdon, ESA-SP-153, ESTEC Noordwijk, The Netherlands.

    Google Scholar 

  • Keller, H. U., Lillie, C. F., 1974, The Scale Length of OH and the Production Rates of H and OH in Comet Bennett (1970 II) Astron. Astrophys. 34, 187.

    ADS  Google Scholar 

  • Klinger, J., 1983, Classification of Cometary Orbits Based on Orbital Mean Temperature; Icarus 55, 169.

    Article  ADS  Google Scholar 

  • Malaise, D. J., 1970, Collisional Effects in Cometary Atmospheres; Astron. Astrophys. 5, 209.

    ADS  Google Scholar 

  • Marsden, B. G., Sekanina, Z., Yeomans, D. K., 1973, Comets and Non-Gravitational Forces, Astron. J. 78, 211.

    Article  ADS  Google Scholar 

  • Morris, C. S., Green D. W. E., 1982, The Light Curve of Periodic Comet Halley 1910 II, Astron. J. 87, 918.

    Article  ADS  Google Scholar 

  • Spinrad, H., 1982, Red Auroral Oxygen Lines in Nine Comets, Publ. Astron. Soc. Pacific, 94, 1008.

    Article  ADS  Google Scholar 

  • Tatum, J. B., Gillespie, M. I., 1977, The Cyanogen Abundance of Comets, Astrophys. J. 218, 569.

    Article  ADS  Google Scholar 

  • Wallis, M. K., 1982, Are Comets Made of H20 Ice?, p. 451 in Proceedings of Third European I.U.E. Conference, Madrid, Spain; ed. E. Rolfe, A. Heck, B. Battrick; ESA-SP-176, Publ. ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Weaver, H. A., Feldman, P. D., Festou, M. C., A’Hearn, M. F., 1981, Water Production Models for Comet Bradfield, Astrophys J. 251, 809.

    Article  ADS  Google Scholar 

  • Whipple, F. L., 1950, A Comet Model I; Astrophys. J. 111 375.

    Article  ADS  Google Scholar 

  • Whipple, F. L., 1951, A Comet Model II; Astrophys. J. 113, 464.

    Article  ADS  Google Scholar 

  • Whipple, F. L., Sekanina, Z., 1979, Comet Encke: Precession of Spin Axis, Non-Gravitational Motion and Sublimation; Astron. J. 84, 1984.

    Google Scholar 

  • Yeomans, D. K., 1977, Comet Halley and Nongravitational Forces; p. 61 in Comets, Asteroids, Meteorites, ed. A. H. Delsemme, publ. University of Toledo Bookstore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Delsemme, A.H. (1985). The Sublimation Temperature of the Cometary Nucleus: Observational Evidence for H2O Snows. In: Klinger, J., Benest, D., Dollfus, A., Smoluchowski, R. (eds) Ices in the Solar System. NATO ASI Series, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5418-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5418-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8891-6

  • Online ISBN: 978-94-009-5418-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics