Skip to main content

The Physics of Ice: Some Fundamentals of Planetary Glaciology

  • Chapter
Ices in the Solar System

Part of the book series: NATO ASI Series ((ASIC,volume 156))

Abstract

Selected properties of ice, particularly those that may be useful for remote sensing in the planetary system or understanding the behavior of ice there, or that will help to predict properties that planetary scientists need, are reviewed. Among them are the phase diagram, including a new easy transformation of ice Ih at 77 K near the extrapolated melting line, the microwave spectrum of ice Ih as determined from an extrapolation of the far-infrared spectrum and used to determine the thickness of ice in Saturn’s rings, and the use of halos to detect crystals of hexagonal and cubic ice. Many properties of ice that are needed for planetary studies may need to be calculated from molecular potential functions. These can be tested by predicting the energies of the phases of ice at zero temperature, which can be evaluated from experimental measurements.

N.R.C. No. 23718

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murray, James A. H., ed., Henry Bradley, Author, 1901, A new English dictionary. Clarendon, Oxford, Vol. IV, p. 192.

    Google Scholar 

  2. Gove, Philip Babcock, 1971, Webster’s Third New International Dictionary. Merriam, Springfield, p. 961.

    Google Scholar 

  3. Hobbs, Peter V.. Ice Physics, Clarendon, Oxford, 19 74.

    Google Scholar 

  4. Tammann, G., 1900, Uber die Grenzen des Festens Zus tandes IV. Ann. Physik 4te Series 2, pp. 1–31.

    Article  ADS  Google Scholar 

  5. Bridgman, P. W., 1911, Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci., 47, pp. 441–558.

    Article  Google Scholar 

  6. Babb, Stanley E., 1963, Some notes concerning Bridgman’s manganin pressure scale. In “High pressure measurement”, ed. A. A. Giardini and Edward C. Lloyd. Butterworths, Washington, pp. 115–123.

    Google Scholar 

  7. Kell, G. S. and Whalley, E., 1968, Equilibrium line between ice I and III. J. Chem. Phys., 48, pp. 2359–2361.

    Article  ADS  Google Scholar 

  8. Bridgman, P. W., 1935, The pressure–volume–temperature relations of the liquid, and the phase diagram of heavy water. J. Chem. Phys., 3, pp. 597–605.

    Article  ADS  Google Scholar 

  9. Evans, L. F., 1967, Selective nucleation of the high–pressure ices. J. Appli. Phys., 38, pp. 4930–4932.

    Article  ADS  Google Scholar 

  10. Engelhardt, H. and Whalley, E., 1972, Ice IV. J. Chem. Phys., 56, pp. 2678–2684.

    Article  ADS  Google Scholar 

  11. Nishibata, K., 1972, Growth of ice IV and equilibrium curves between liquid water, ice IV, ice V and ice VI. Japan. J. Appl. Phys., 11, pp. 1701–1708.

    Article  ADS  Google Scholar 

  12. Bridgman, P. W., 1937, The phase diagram of water to 45.000 kg/cm2. J. Chem. Phys., 5, pp. 964–966.

    Article  ADS  Google Scholar 

  13. König, Hans, 1943, Eine kubische eismodifikation. Z. Kristallogr., 105, pp. 279–286.

    Google Scholar 

  14. Gormley, J. A., 1968, Enthalpy changes and heat capacity changes in the transformations from high–surface–area amorphous ice to stable hexagonal ice. J. Chem. Phys., 48, pp. 503–508.

    Article  ADS  Google Scholar 

  15. Di Marzio, E. A. and Stillinger, F. H., 1964, Residual entropy of ice. J. Chem. Phys., 40, pp. 1577–1581.

    Article  ADS  Google Scholar 

  16. Nagle, J. F., 1966, Lattice statistics of hydrogenbonded crystals. I. The residual entropy of ice. J. Math. Phys., 7, pp. 1484–1491.

    Article  MathSciNet  ADS  Google Scholar 

  17. Tajima, Y., Matsuo, T. and Suga, H., 1982, Phasetransition in KOH–doped hexagonal ice. Nature, 299, pp. 810–812.

    Article  ADS  Google Scholar 

  18. Whalley, E., 1976, The hydrogen bond in ice. In “The hydrogen bond. III. Dynamics, thermodynamics and special systems”. Ed. P. Shuster, G. Zundel and C. Sandorfy. North Holland, Amsterdam, pp. 1425–1470.

    Google Scholar 

  19. Hamilton, W. C., Kamb, B., LaPlaca, S. J. and Prakash, A., 1971, Ordered proton configuration in ice II from single–crystal neutron diffraction. J. Chem. Phys., 55, pp. 1934–1945.

    Article  ADS  Google Scholar 

  20. Wilson, G. J., Chan, R. K., Davidson, D. W. and Whalley, E., 1965, Dielectric properties of ices II, III, V and VI, J. Chem. Phys.$143, pp. 2384–239 1.

    Google Scholar 

  21. Kamb, B., 1964, Ice II: A proton–ordered form of ice. Acta Cryst., 17, pp. 1437–1449.

    Article  Google Scholar 

  22. Whalley, E. and Davidson, D. W., 1965, Entropy changes at the phase transitions in ice. J. Chem. Phys. 43, pp. 2148–2149.

    Article  ADS  Google Scholar 

  23. Whalley, E. and Davidson, D. W., 1965, Entropy changes at the phase transitions in ice. J. Chem. Phys. 43, pp. 2148–2149.

    Article  ADS  Google Scholar 

  24. Whalley, E., 1969, Structure problems of ice. In “Physics of Ice”. Ed. N. Riehl, B. Bullemer and H. Engelhardt. Plenum, New York, pp. 19–43.

    Google Scholar 

  25. Wong, P. T. T. and Whalley, E., 1976, Raman spectrum of ice VIII. J. Chem. Phys., 64, pp. 2359–2366.

    Article  ADS  Google Scholar 

  26. Whalley, E., Davidson, D. W. and Heath, J. B. R., 1966, Dielectric properties of ice VII. Ice VIII: a new phase of ice. J. Chem. Phys., 46, pp. 3976–3982.

    Article  ADS  Google Scholar 

  27. Brown, A. J. and Whalley, E., 1966, A preliminary investigation of the phase boundaries between ice VI and VII and ice VI and VIII. J. Chem. Phys., 45, pp. 4360–4361.

    Article  ADS  Google Scholar 

  28. Johari, G. P., Lavergne, A. and Whalley, E., 1974, The dielectric properties of ice VII and VIII and the phase boundary between ice VI and VII. J. Chem. Phys., 61, pp. 4202–4300.

    Article  Google Scholar 

  29. Whalley, E., Heath, J. B, Rt and Dayidson, D. W., 1968, Ice IX: An antiferroelectric phase related to ice III. J, Chem. Phys., 48, pp. 2362–237Q.

    Google Scholar 

  30. Nishibata, K. and Whalley, E., 1974, Thermal effects of the transformation ice III–IX. J. Chem. Phys., 60, pp. 3189–3194.

    Article  ADS  Google Scholar 

  31. LaPlaca, S. J., Hamilton, W. C., Kamb, B. and Prakash, A., 1974, A nearly proton–ordered structure for ice IX. J. Chem. Phys., 58, pp. 567–580.

    Article  Google Scholar 

  32. Mishima, O. and Endo, S., 1980, Phase relations of ice under pressure. J. Chem. Phys., 73, pp. 2454–2456.

    Article  ADS  Google Scholar 

  33. Johari, G. P. and Whalley, E., 1976, Dielectric properties of ice VI at low temperatures. J. Chem. Phys., 64, pp. 4484–4489.

    Article  ADS  Google Scholar 

  34. Kamb, B., 1973, Crystallography of ice. In “Physics and chemistry of ice”, ed. E. Whalley, S. J. Jones and L. W. Gold. Royal Society of Canada, Ottawa, pp. 28–41.

    Google Scholar 

  35. Johari, G. P. and Whalley, E., 1979, Evidence for a very slow transformation in ice VI at low temperatures. J. Chem. Phys., 70, pp. 2094–2097.

    Article  ADS  Google Scholar 

  36. Miller, Stanley L.. Clathrate hydrates in the solar system. This volume.

    Google Scholar 

  37. Davidson, D. W., 1973, Clathrate hydrates. In “Water, a comprehensive treatise”, ed. F. Franks, Plenum, New York, pp. 115–234.

    Google Scholar 

  38. Burton, E. F. and Oliver, W. F., 1938, The crystal structure of ice at low temperatures. Proc. Roy. Soc. A 153, pp. 166–172.

    ADS  Google Scholar 

  39. Tammann, G. and Starinkewitsch, J., 1913, (Uber die Bildung von Glas auf Dampf. Z. Physik Chem ., 85, pp. 573–578.

    Google Scholar 

  40. Olander, David S. and Rice, Stuart A., 1972, Preparation of amorphous solid water. Proc. Nat. Acad. Sci. U.S., 69, pp. 98–100.

    Article  ADS  Google Scholar 

  41. Bütiggeller, Peter and Mayer, Erwin, 1980, Complete vitrification in pure liquid water and dilute aqueous solutions. Mature, 288, pp. 569–571.

    ADS  Google Scholar 

  42. Mayer, Erwin and Briiggeller, Peter, 1982, Vitrification of pure liquid water by high pressure jet freezing. Nature, 298, pp. 715–717.

    Article  ADS  Google Scholar 

  43. Kanno, H., Speedy, R. J. and Angell, C. A., 1975, Science 189, pp. 880–881.

    Article  ADS  Google Scholar 

  44. Bertie, J. E., Calvert, L. D. and Whalley, E., Transformations of ice II, ice III, and ice V at atmospheric pressure. J. Chem. Phys., 38, pp. 840–846.

    Google Scholar 

  45. Bertie, J. E., Calvert, L. D. and Whalley, E., Transformation of ice VI and ice VII at atmospheric pressure. Can. J. Chem., 42, pp. 1373–1378.

    Google Scholar 

  46. Mishima, O., Calvert, L. D. and Whalley, E., 1984, “Melting” ice I at 77 K. A new method of making amorphous solids. Nature, 310, pp. 393–395.

    Google Scholar 

  47. Mishima, 0., Calvert, L. D. and Whalley, E., In preparation.

    Google Scholar 

  48. Klinger, J., 1983, Extraterrestial ice. A review. J. Phys. Chem., 87, pp. 4209–4214.

    Article  ADS  Google Scholar 

  49. Bertie, John E. and Devlin, J. Paul, 1983, Infrared spectroscopic proof of the formation of the structure I hydrate of oxirane from annealed low–temperature condensate. J. Chem. Phys.$178, pp. 6340–634 1.

    Google Scholar 

  50. Torchet, G., Schwartz, P., Farges, J., de Feraudy, M. F., and Raoult, B., 1983, Structure of solid water clusters formed in a free jet expansion. J. Chem. Phys., 79, pp. 6196–6202.

    Article  ADS  Google Scholar 

  51. Bertie, J. E. and Whalley, E., 1964, Infrared spectra of ices Ih and Ic in the range 4000 to 350 cm-1. J. Chem. Phys., 40, pp. 1637–1645.

    Article  ADS  Google Scholar 

  52. Bertie, John E. and Jacobs, Stephen M., 1977, Far infrared absorption in ices Ih and Ic at 4.3 K and the powder diffraction pattern of ice Ic. J. Chem. Phys., 67, pp. 2445–2558.

    Article  ADS  Google Scholar 

  53. Whalley, E. and Bertie, J. E., 1967, Optical spectra of orientationally disordered crystals. I. Theory for trans1 ationa1 lattice vibrations. J. Chem. Phys., 46, pp. 1264–1270.

    Article  ADS  Google Scholar 

  54. Bertie, J. E. and Whalley, E., 1967, Optical spectra of orientationa11y disordered crystals. II. Infrared spectrum of ice Ih and Ic from 360 to 50 cm–1. J. Chem. Phys., 46, pp. 1271–1284.

    Article  ADS  Google Scholar 

  55. Greenberg, J. Mayo. Chemical evolution of inters tellar dust ice. This volume.

    Google Scholar 

  56. Mishima, O., Klug, D. D. and Whalley, E., 1983, The far-infrared spectrum of ice Ih in the range 8–25 cm-1. Sound waves and difference bands, with application to Saturn’s rings. J. Chem. Phys., 78, pp. 6399–6404.

    Article  ADS  Google Scholar 

  57. Whalley, E. and Labbe, H. J., 1969, Optical spectra of orientationally disordered crystals. III. Infrared spectra of the sound waves. J. Chem. Phys., 51, pp. 3120–3127.

    Article  ADS  Google Scholar 

  58. Szigeti, B., 1960, The infrared spectra of crystals. Proc. Roy. Soc. A 258, pp. 377–401.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Epstein, Eugene E., Janssen, Michael A., Cuzzi, Jeffrey N., Fogarty, William G. and Mattmann, John, 1980, Saturn’s rings: 3 -mm observations and derived properties. Icarus, 41, pp. 103–118.

    Article  ADS  Google Scholar 

  60. Epstein, Eugene E., Janssen, Michael A., Cuzzi, Jeffrey N., Fogarty, William G. and Mattmann, John, 1980, Saturn’s rings: 3 -mm observations and derived properties. Icarus, 41, pp. 103–118.

    Article  ADS  Google Scholar 

  61. Epstein, Eugene E., Janssen, Michael A., Cuzzi, Jeffrey N., Fogarty, William G. and Mattmann, John, 1980, Saturn’s rings: 3 -mm observations and derived properties. Icarus, 41, pp. 103–118.

    Article  ADS  Google Scholar 

  62. Bertie, J. E., Labbe, H. J. and Whalley, E., 1969, Absorptivity of ice I in the range 4000–30 cm-1. J. Chem. Phys., 50, pp. 4501–4520.

    Article  ADS  Google Scholar 

  63. Gammon, P. H., Kiefte, H. and Clouter, M. J., 1983, Elastic constants of ice samples by Brillouin spectroscopy. J. Phys. Chem., 87, pp. 4025–4029.

    Article  Google Scholar 

  64. Greeler, Robert, 1980, Rainbows, halos and glories. Cambridge University Press.

    Google Scholar 

  65. Merwin, H. E., 1930, Internat. Crit. Tables, Vol. 7, p. 17.

    Google Scholar 

  66. LaPlaca, S. and Post, B., 1960, Thermal expansion of ice. Acta Cryst., 13, pp. 503–505.

    Article  Google Scholar 

  67. Brill, R. and Tippe, A., 1967, Gitterparameter von Eis I bei tiefen temperaturen. Acta Cryst., 23, pp. 343–345.

    Article  Google Scholar 

  68. Whalley, E., 1983, Cubic ice in nature. J. Phys. Chem., 87, pp. 4174–4179.

    Article  Google Scholar 

  69. Whalley, E., 1981, Scheiner’s halo: evidence for ice Ic in the atmosphere. Science 211, pp. 389–390.

    Article  ADS  Google Scholar 

  70. Takahaski, T. and Kobayashi, T., 1983, The role of the cubic structure in freezing of a supercooled water droplet on an ice substrate. J. Cryst. Growth 64, pp. 593–603.

    Article  ADS  Google Scholar 

  71. O’Leary, Brian T., 1966, The presence of ice in the Venus atmosphere as inferred from a halo effect. Astrophys. J. 146, pp. 754–766.

    Article  ADS  Google Scholar 

  72. Veverka, J., 1971, A polarimetric search for a Venus halo during the 1969 inferior conjunction. Icarus, 14, pp. 282–283.

    Article  ADS  Google Scholar 

  73. Konnen, G. P., 1983, Polarization and intensity distribution of refraction halos. J. Opt. Soc. Am., 73, pp. 1629–1640.

    Article  ADS  Google Scholar 

  74. Tricker, R. A. R., 1979, Arcs associated with halos of unusual radii. J. Opt. Soc. Am., 69, pp. 1093–1100.

    Article  ADS  Google Scholar 

  75. Tricker, R. A. R., 1979, Ice crystal halos. Optical Society of America, Washington.

    Google Scholar 

  76. de Forcrand, R., 1883, Recherches sur les hydrates sulphydres. Ann. Chim. Phys., 28, pp. 5–66.

    Google Scholar 

  77. Villard, P., 1897, Etude experimentale des hydrates de gaz. Ann. Chim. Phys. Ser. 7, 11, pp. 289–394.

    Google Scholar 

  78. Villard, P., 1897, Etude experimentale des hydrates de gaz. Ann. Chim. Phys. Ser. 7, 11, pp. 289–394.

    Google Scholar 

  79. Huler, E. and Zunger, A., 1976, Calculation of the equilibrium configuration and intermo1ecular frequencies of water dimers and hexagonal ice. Chem. Phys., 13, pp. 433–440.

    Article  ADS  Google Scholar 

  80. Morse, M. D. and Rice, S. A., 1981, A test of the accuracy of an effective pair potential for liquid water. J. Chem. Phys., 74, pp. 6514–6516.

    Article  ADS  Google Scholar 

  81. Morse, M. D. and Rice, S. A., 1982, Tests of effective pair potentials for water: predicted ice structures. J. Chem. Phys., 76, pp. 650–660.

    Article  ADS  Google Scholar 

  82. Whalley, E., 1957, The difference in the intermolecular forces of H20 and D20. Trans. Faraday Soc. 53, pp. 1578–1585.

    Article  Google Scholar 

  83. Walrafen, G. E., Abebe, M., Mauer, F. A., Block, S., Piermarini, G. J. and Munro, R. G., 1982, J. Chem. Phys., 77, pp. 2166–2174.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Whalley, E. (1985). The Physics of Ice: Some Fundamentals of Planetary Glaciology. In: Klinger, J., Benest, D., Dollfus, A., Smoluchowski, R. (eds) Ices in the Solar System. NATO ASI Series, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5418-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5418-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8891-6

  • Online ISBN: 978-94-009-5418-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics