Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 154))

Abstract

Integrable hamiltonian systems are interesting because they are quite easy to understand and because many real systems are perturbations of them. When we have a perturbed system it is, in general, no longer integrable. The homoclinic phenomena are responsable for this lack of integrability. This is already seen in suitable perturbations of normal forms near a critical point. However some measure of this lack of integrability is interesting, because it tells us how far is the system of being integrable and, if we allow for some tolerance, we can decide when a non integrable system behaves like an integrable one for practical purposes. The same ideas lead us to a deep understanding of Arnold’s diffusion in systems of more than two degrees of freedom. If we add some dissipative perturbation there is a good chance to find complicated attractors. How and why they appear can be explained in terms of invariant manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V., Avez, A.:Ergodic problems of classical mechanics, Benjamin, 1968.

    Google Scholar 

  2. Churchill, R.C., Rod, D.L.:“Homoclinic and heteroclinic orbits of reversible vectorfields under perturbation”, preprint, 1984.

    Google Scholar 

  3. Delshams, A.;Por gué la difusion de Arnold aparece genericamente en sistemas hamiltonianos de 3 o más grados de libertad, Ph. Thesis, U. of Barcelona, 1983.

    Google Scholar 

  4. Delshams, A., Simó, C.: In preparation.

    Google Scholar 

  5. Duistermaat, J.J.:“Non-integrability of the 1:1:2 resonance”, preprint, 1984.

    Google Scholar 

  6. Font, J.:Variedades invariantes de L 3 en el problema restrigido, M.S.Thesis, U. of Barcelona, 1984 and also this Volume.

    Google Scholar 

  7. Garrido, L., Simó, C.:“Some ideas about strange attractors”, in Proceed.Sitges Conf. on Dynamical Systems and Chaos, Lect.Notes in Phys.179, Springer(1983), 1–28.

    Google Scholar 

  8. Hénon, M. “Numerical study of quadratic area-preserving maps”, Quat.Appl.Math., XXVII(1969), 291–312.

    Google Scholar 

  9. Henon, M., Heiles, C.: “The applicability of the third integral of motion; some numerical experiments”, Astron.J., 69(1964), 73–79.

    Article  MathSciNet  ADS  Google Scholar 

  10. Jakobson, M.V.:“Absolutely continuous invariant measures for one-parameter families of one-dimensional maps”, Commun.Math.Phys., 81(1981), 39–88.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Llibre, J., Simó, C.:“On the Hénon-Heiles potential”, Actas III Congreso de Ec.Dif.yAplicaciones, Santiago de Compostela(1980), 183–206.

    Google Scholar 

  12. Llibre, J., Simó, C.:“Oscillatory solutions in the planar restricted three-body problem”, Math.Ann., 248(1980), 153–184.

    Article  MathSciNet  MATH  Google Scholar 

  13. Llibre, J., Martinez, R., Simó, C.:“Transversality of the invariant manifolds associated to the Lyapunov family of P.O. near L2 in the RTBP”, to appear in Journal of Diff.Eg.

    Google Scholar 

  14. Moser, J.; Stable and random motions in dynamical systems, Princeton Univ.Press, Princeton, 1973.

    MATH  Google Scholar 

  15. Newhouse, S.:“The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Pub.Math.I.H.E.S., 50, (1979), 101–152.

    MathSciNet  MATH  Google Scholar 

  16. Siegel, C.L., Moser, J.:Lectures on Celestial Mechanics, Springer, 1971.

    MATH  Google Scholar 

  17. Simó, C.: “Integrability: A difficult analytical problem”, Actas VII Jornadas Mat. Hispano-Lusitanas, Sant Feliu, 1980, 71–80.

    Google Scholar 

  18. Simó, C., Fontich, E.:“On the smallness of the angle between split separatrices”, Proceed.Colloque Géom.Symplect.et Mécanique, Montpellier, 1984, to appear.

    Google Scholar 

  19. Tatger, J.C.:Estudio cualitativo del fenómeno de Newhouse, M.S. Thesis, U. of Barcelona, 1984.

    Google Scholar 

  20. Ziglin, S.L.:“Branching of solutions and nonexistence of first integrals in hamiltonian mechanics, I, II”, Funct.Anal.Appl., 16 (1982), 181–189

    Article  MathSciNet  Google Scholar 

  21. Ziglin, S.L.:“Branching of solutions and nonexistence of first integrals in hamiltonian mechanics, I, II”, Funct.Anal.Appl., 17(1983), 6–17.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Simö, C. (1985). Homoclinic Phenomena and Quasi-Integrability. In: Szebehely, V.G. (eds) Stability of the Solar System and Its Minor Natural and Artificial Bodies. NATO ASI Series, vol 154. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5398-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5398-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8883-1

  • Online ISBN: 978-94-009-5398-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics