Skip to main content

The J-Concept: Theoretical Basis And its Use in EPFM

  • Conference paper
Elastic-Plastic Fracture Mechanics

Abstract

The first part of this paper summarizes the original (two-dimensional) definition of the J-integral as introduced by Rice and the physical interpretation of J in terms of potential energy release and crack tip stress/strain field characterization. The derivation of a conservation law is discussed, from which the J-theory is generalized to plane defects in three-dimensional bodies and loadings not covered by the original concept, such as thermally induced initial strains, body forces and crack surface pressure.

the second part deals with the application of the J-cocept to elastic-plastic materials. It is argued that, as the theoretical concept is only valid for linear or non-linear elastic materials, or materials obeying a deformation theory of plasticity, practical applications are limited to the prediction of crack growth initiation and (to within certain limits)stable crack growth and final instability in structures with monotonically increasing proportional loads. Some important backgrounds of these specific applications of the J-concept are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Irwin, G,R, Journal of Applied Mechanics, 24 (1957), pp. 361–364

    Google Scholar 

  2. Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials, Annual Book of ASTM Standards, ASTM E399–78, American Society for Testing of Materials, USA, 1979

    Google Scholar 

  3. Methods of Test for Plane Strain Fracture Toughness (K Ic -) of Metallic Materials, BS 5447, British Standards Institution, UK, 1978

    Google Scholar 

  4. Boiler and Pressure Vessel Code, Section III, division 1 and Section XI, division 1, American Society of Mechanical Engineers, USA, 1983

    Google Scholar 

  5. Rice, J.R. Journal of Applied Mechanics, 35 (1968), pp. 379–386

    Google Scholar 

  6. Broberg, B. Journal of the Mechanics and Physics of Solids, 19 (1971), pp. 407–418

    Article  ADS  Google Scholar 

  7. Begley, J.A. and Landes, J.D. In: Fracture Toughness part II, ASTM STP 514, pp. 1–23, American Society for Testing and Materials, USA, 1972

    Google Scholar 

  8. Paris, P., Tada, H., Zahoor, A. and Ernst, H.A. A Treatment of the Subject of Tearing Instability, U.S. Nuclear Regulatory Commission Report NUREG-0311, USA, 1977

    Google Scholar 

  9. Standard Test for JIc, a Measure of Fracture Toughness, Annual Book of ASTM Standards, ASTM E813-81, American Society for Testing and Materials, USA, 1981

    Google Scholar 

  10. Standard Method of Test for Elastic-Plastic Fracture Toughness J Ic Japan Society of Mechanical Engineers, JSME S001-1981, Japan, 1981

    Google Scholar 

  11. Knowles, J.K. and Sternberg, E. Archive for Rational Mechanics and Analysis, 44 C1972), pp. 187–211

    Google Scholar 

  12. Turner, C.E. In: Post-Yield Fracture Mechanics, D.G.H. Latzko, Chapter 2, Applied Science, Publ., London, UK, 1979

    Google Scholar 

  13. Rice, J.R. In: Fracture: an advanced treatise, 2, H. Liebowitz, ed., pp. 191–311, Academic Press, New York, USA, 1968

    Google Scholar 

  14. Sakata, M., Aoki, S. and Ishii, K. Proc. International Conference on Fracture Mechanics Techn., 1. G. C. Sih and C.L. Chow, editors, pp. 515–523, Sijthoff & Noordhoff, Leyden, The Netherlands, 1977

    Google Scholar 

  15. Ainsworth, R.A., Neale, B.K. and Price, R.H. Proc. Int. Conf. on Tolerance of Flaws in Pressurized Components, pp. 171–178, Institution of Mechanical Engineers, London, UK, 1978

    Google Scholar 

  16. de Lorenzi, H.G. International Journal of Fracture, 19 (1982), pp. 183–193

    Article  Google Scholar 

  17. Westergaard Transactions of the ASME, 61 (1939), pp. A49–A53

    Google Scholar 

  18. Larsson, S.G. and Carlsson, A.J. Journal of the Mechanics and Physics of Solids, 21 (1973), pp. 263–277

    Article  ADS  Google Scholar 

  19. Rice, J.R. Journal of the Mechanics and Physics of Solids, 22 (1974), pp. 17–26

    Article  ADS  Google Scholar 

  20. Hutchinson, J.W. Journal of the Mechanics and Physics of Solids, 16 (1968), pp. 13–31

    Article  ADS  MATH  Google Scholar 

  21. Hutchinson, J.W. Journal of the Mechanics and Physics of Solids, 16 (1968), pp. 337–347

    Article  ADS  Google Scholar 

  22. Rice, J.R. and Rosengren, G.F. Journal of the Mechanics and Physics of Solids, 16 (1968), pp. 1–12

    Article  ADS  MATH  Google Scholar 

  23. McClintock, F.A. In: Fracture: An Advanced Treatise, 3, H. Liebowitz, editor, pp. 48–227, Academic Press, New York, USA, 1971

    Google Scholar 

  24. Eshelby, J.D. in: Solid State Physics: Advances in Research and Applications, 3, F. Seitz and D. Turnbull, editors, pp. 79–144, Academic Press, New York, USA, 1956

    Google Scholar 

  25. Kikuchi, M., Miyamoto, H. and Sakagichi, Y. Proc. 5-th SMiRT Conference, paper G 7–2, Berlin, FRG, 1979

    Google Scholar 

  26. Kishimoto, K., Aoki, S. and Sakata, M. Engineering Fracture Mechanics, 13 (1980), pp. 841–850

    Article  Google Scholar 

  27. Labbens, R. Introduction à la Mecanique de la Rupture. Edition Pluralis, Paris, France, 1980

    Google Scholar 

  28. Budiansky, B. and Rice, J.R. Journal of Applied Mechanics, 40 (1973), pp. 201–203

    Article  ADS  MATH  Google Scholar 

  29. Bakker, A. in: Application of Fracture Mechanics to Materials and Structures, G.C. Sih, E. Sommer and W. Dahl, editors, pp. 657–671, M. Nijhoff Publ., The Hague, The Netherlands

    Google Scholar 

  30. Bakker, A. International Journal of Pressure Vessels and Piping, 14 (1983), pp. 153–179

    Article  Google Scholar 

  31. Hellen, T.K. Int. Journal for Numerical Methods in Engineering, 9 (1975), pp. 187–207

    Article  MATH  Google Scholar 

  32. Parks, D.M. International Journal of Fracture, 10 (1974), pp. 487–502

    Article  Google Scholar 

  33. McMeeking, R.M. Journal of the Mechanics and Physics of Solids, 25 (1977), pp. 357–381

    Article  ADS  Google Scholar 

  34. Landes, J.D. and Begley, J.A. In: Fracture Toughness part II, ASTM STP 514, pp. 24–39, American Society for Testing and Materials, USA, 1972

    Book  Google Scholar 

  35. Begley, J.A. and Landes, J.D. In: Fracture Analysis, ASTM STP 560, pp. 170–186, American Society for Testing and Materials, USA, 1974

    Google Scholar 

  36. Methods for Crack Opening Displacement (COD) Testing, BS 5762, British Standards Institution, London, UK, 1979

    Google Scholar 

  37. Hutchinson, J.W. and Paris, P.C. In: Elastic-Plastic Fracture, ASTM STP 668, pp. 37–64, American Society for Testing and Materials, USA, 1979

    Book  Google Scholar 

  38. Shih, C.F., de Lorenzi, H.G. and Andrews, W.R. In: Elastic-Plastic Fracture, ASTM STP 668, pp. 65–110, American Society for Testing and Materials, USA, 1979

    Book  Google Scholar 

  39. Shih, C.F., German, M.D. and Kumar, V. International Journal of Pressure Vessels and Piping, 9 (1981), pp. 159–196

    Article  Google Scholar 

  40. Kumar, V., German, M.D. and Shih, C.F. An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI NP-1931, Electric Power Research Institute, USA, 1981

    Google Scholar 

  41. Rice, J.R. and Sorensen, E.P. Journal of the Mechanics and Physics of Solids, 26 (1978), pp. 163–186

    Article  ADS  MATH  Google Scholar 

  42. Rice, J.R., Drugan, W.J. and Sham, T.L. In: Fracture Mechanics: Twelfth Conference, ASTM STP 700, pp. 189–200. American Society for Testing and Materials, USA, 1980

    Google Scholar 

  43. Ernst, H.A. in: Elastic-Plastic Fracture: Second. Symposium, ASTM STP 803, pp. I- 191–213, American Society for Testing and Materials, USA, 1983

    Google Scholar 

  44. Ernst, H.A., Paris, P.C., Rossow, M. and Hutchinson, J.W. In: Fracture Mechanics, ASTM STP 677, pp. 581–599, American Society for Testing and Materials, USA, 1979

    Book  Google Scholar 

  45. Ernst, H.A., Paris, P.C. and Landes, J.D. In: Fracture Mechanics, ASTM STP 743, pp. 476–502, American Society for Testing and Materials, USA, 1981

    Book  Google Scholar 

  46. Turner, C.E. In: Advances in Elasto-Plastic Fracture Mechanics, L.H. Larsson, editor, pp. 301–318, Applied Science Publ., London, UK, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 ECSC,EEC,EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Bakker, A. (1985). The J-Concept: Theoretical Basis And its Use in EPFM. In: Larsson, L.H. (eds) Elastic-Plastic Fracture Mechanics. Ispra Courses on Materials, Engineering and Mechanical Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5380-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5380-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8874-9

  • Online ISBN: 978-94-009-5380-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics