Skip to main content

Dissolving Metal Reduction

K Metal-Crown Ether-Toluene System For Reductive Defluorination

  • Conference paper
Clathrate Compounds, Molecular Inclusion Phenomena, and Cyclodextrins

Part of the book series: Advances in Inclusion Science ((AIS,volume 3))

  • 254 Accesses

Abstract

Toluene radical anion, generated by dissolving potasssium metal in toluene by the assistance of dicyclohexano-18-crown-6, has been proved to be especially effective for reductive removal of fluorine atom from unactivated alkyl fluorides that resist common reduction conditions. Stereochemical and mechanistic aspects of the present method is discussed. In connection with the preparation of substrates the effect of dipolar aprotic solvents on the nucleophilic fluorination with potassium fluoride/dicyclohexano-18-crown-6 system was also examined, and sulfolane or N, N-dimethylformamide was shown to be a solvent of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. T. Ohsawa, T. Takagaki, A. Haneda and T. Oishi, Tetrahedron Lett., 1981, 2583.

    Google Scholar 

  2. T. Ohsawa, T. Takagaki, F. Ikehara, Y. Takahashi and T. Oishi, Chem. Pharm. Bull., 30, 3178 (1982).

    CAS  Google Scholar 

  3. C. J. Pedersen, J. Am. Chem. Soc., 89, 7017. (1967);

    Google Scholar 

  4. C. J. Pedersen and H. K. Frensdorff, Angew. Chem. Int. Ed. Engl., 11,16 (1972).

    Google Scholar 

  5. J.L. Dye, M.G. DeBacker and V.A. Nicely, J. Am. Chem. Soc., 92, 5226 (1970);

    Google Scholar 

  6. J.L. Dye, M.T. Lock, F.J. Tehan, R.B. Coolen, N. Papadakis, J.M. Ceraso and M.G. DeBacker, Berichte Bunzenges Phys. Chem., 75, 659 (1971);

    Google Scholar 

  7. J.L. Dye, J.M. Ceraso, M.T. Lock, B.L. Barnett and F.J. Tehan, J. Am. Chem. Soc., 96, 608 (1974); F.J. Tehan, B.L. Barnett and J.L. Dye, ibid. 96, 7203 (1974).

    Google Scholar 

  8. J.L. Dye, Angew. Chem. Int. Ed. Engl. 18, 587 (1979); J.M. Lehn, Pure Appl. Chem.? 52, 2303 (1980).

    Google Scholar 

  9. U. Schindewolf, Angew. Chem. Int. Ed. Engl., 7, 190; D.M. Holton, P.P. Edwards, D.C. Johnson, C.J. Page, W. MacFarlane and B. Wood, J. C. S. Chem. Comm., 1984, 741.

    Google Scholar 

  10. A.G.M. Barrett, P.A. Prokopiou and D.H.R. Barton, J. C. S. Perkin Trans. I, 1981, 1510. and references cited therein,

    Google Scholar 

  11. H.0. House, Modern Synthetic Reactions, 2nd ed., W.A. Benjamin, Inc., Menlo Park, 1972, pp. 145 – 227.

    Google Scholar 

  12. N.D. Scott, J.F. Walker and V.L. Hansley, J. Am. Chem. Soc., 58, 2442 (1936).

    Article  CAS  Google Scholar 

  13. B. Kaempf, S. Raynal, A. Collet, F. Schue, S. Boileau and J.M. Lehn, Angew. Chem. Int. Ed. Engl., 13, 611 (1974);

    Google Scholar 

  14. M. Komarynsky and S.I. Weissman, J. Am. Chem. Soc., 97, 1589 (1975);

    Google Scholar 

  15. G.V. Nelson and A.V. Zelewsky, ibid., 97, 6279 (1975);

    Google Scholar 

  16. P. Belser, G. Desbiolles, U. Ochsenbein and A.V. Zelewsky, Helv. Chim. Acta., 63, 523 (1980).

    Article  CAS  Google Scholar 

  17. K solution is black-blue and toluene radical anion solution is brown-red in color.

    Google Scholar 

  18. Bond energy (Kcal/mol) C-H, 99; C-F, 116; C-Cl, 81; C-Br, 68; C-I, 51. J.B. Hendrickson, [9a]D.J. Cram and G.S. Hammond, “Organic Chemistry, 3rd ed.”, McGraw-Hill Kogakusha, Tokyo, 1970, pp 63.

    Google Scholar 

  19. J. Jacobus and J.F. Eastham, J. C. S. Chem. Comm., 1969, 138.

    Google Scholar 

  20. T. Ishihara, E. Ohtani and T. Ando, J. C. S. Chem. Comm., 1975, 367.

    Google Scholar 

  21. R.O. Hutchins, D. Kandasamy, C.A. Maryanoff, D. Masilamani and B.E. Maryanoff, J. Org. Chem., 42, 82 (1977).

    Article  CAS  Google Scholar 

  22. . M.A. Anbar and E.J. Hart, J. Phys. Chem., 69, 271 (1965).

    Article  CAS  Google Scholar 

  23. D. Bryce-Smith, B.J. Wakefield and E.T. Blues, Proceeding Chem. Soc., 1963, 219

    Google Scholar 

  24. J.F. Garst and F.E. Barton II, Tetrahedron Lett., 1969, 587;

    Google Scholar 

  25. J. Am. Chem. Soc., 96, 523 (1974);

    Google Scholar 

  26. J.F. Garst, R.D. Roberts and B.N. Abels, J. Am. Chem. Soc., 97, 4925 (1975).

    Article  CAS  Google Scholar 

  27. J.R. Lacher, A. Kianpour and J.D. Park, J. Phys. Chem., 60, 1454 (1956).

    Article  CAS  Google Scholar 

  28. H. Kawasaki, N. Tone and K. Tonomura, Agri. Biol. Chem., 45, 29, 35, 543 (1981).

    Article  Google Scholar 

  29. C.L. Liotta and H.P. Harris, J. Am. Chem. Soc., 96, 2250 (1974).

    Article  CAS  Google Scholar 

  30. P. Ykman and H.K. Hall Jr. Tetrahedron Lett., 1975, 2429.

    Google Scholar 

  31. D. Landini and F. Montanari, J. C. S. Chem. Comm., 1974, 879.

    Google Scholar 

  32. Half-height width is much narrower at 50 C than at 20 C.

    Google Scholar 

  33. 18-C-6 or dibenzo-18-C-6 gave poorer results.

    Google Scholar 

  34. N.E. Boutin, D.U. Robert and A.R. Cambon, Bull. Soc. Chim. Fr., 1974, 2861;

    Google Scholar 

  35. Y. Kobayashi, I. Kumadaki, A. Ohsawa, M. Honda and Y. Hanzawa, Chem. Pharm. Bull., 23, 196 (1975);

    Google Scholar 

  36. H.B. Henbest and W.R. Jackson, J. Chem. Soc., 1962, 954;

    Google Scholar 

  37. S. Colonna, A. Re, G. Gelbard and E. Cesarotti, J. C. S. Perkin I, 1979, 2248.

    Google Scholar 

  38. J. Diekman and C. Djerassi, J. Org. Chem., 32, 1005 (1967);

    Google Scholar 

  39. O.H. Wheeler and J.L. Mateos, Can. J. Chem., 36, 1431 (1958).

    Article  CAS  Google Scholar 

  40. O. Diels and P. Blumberg, Chem. Ber., 44, 2847 (1911); J. Mauthner, Monatsh Chem., 30, 635 (1909).

    Google Scholar 

  41. Synthesis of (10) was carried out from 24,24-dimethyl-24- hydroxycholane (11) with 70% hydrogen fluoride/pyridine (Aldrich) at ambient temperature in 64% yield. See G.A. Olah, J.T. Welch, Y.D. Vankar, M. Nojima, I. Kerekes and J.A. Olah, J. Org. Chem., 44, 3872 (1979).

    Article  Google Scholar 

  42. M.R.C. Gestenberger and A.H. Haas, Angew. Chem. Int. Ed. Engl.,20, 638 (1981);

    Google Scholar 

  43. M. Schlosser, Tetrahedron, 34, 3 (1978);

    Google Scholar 

  44. Ed. by Chem. Soc. Jpn., Kagaku-Sosetsu, 27, “Atarashii Fusso-Kagakutf”, Gakkai Shuppan Centre, Tokyo, 1980.

    Google Scholar 

  45. Although these solvents have high dielectric constants, they are especially characterized by their low donor numbers which are the indexes of basicity.

    Google Scholar 

  46. A.F. Sowinsky and G.M. Whitesides, J. Org. Chem., 44, 2369 (1979).

    Article  Google Scholar 

  47. Formation of complex in MeOH in advance, followed by solventexchange, gave better result than direct reaction in sulfolane.

    Google Scholar 

  48. 6-Fluoro-l-hexene was reduced under the same conditions to give 1-hexene and methylcyclopentane in combined yield of 54–58%, based on alkyl fluoride consumed. See ref. 11b).

    Google Scholar 

  49. L.F. Fieser and M. Fieser, Reagent for Organic synthesis, vol. 1, John Wiley and Sons, Inc., [25a]New York, 1967, pp. 1102 – 1103.

    Google Scholar 

  50. T. Cuvigny and M. Larcheveque, J. Organomet. Chem., 64, 315 (1974).

    Article  CAS  Google Scholar 

  51. Terminal vinyl group is easily saturated under K/DC-18-C-6/diglyme- iPrOH conditions.

    Google Scholar 

  52. A.L.J. Beckwith and G. Moad, J. C. S. Chem. Comm., 1974, 472;

    Google Scholar 

  53. C. Walling and A. Cioffari, J. Am. Chem. Soc., 94, 6059 (1972). See also ref 25).

    Google Scholar 

  54. J.R. Hanson, H.J. Wadsworth and W.E. Hull, J. C. S. Perkin I, 1980, 1382.

    Google Scholar 

  55. P.E. Verkade, K.S. de Vries and B.M. Wepster, Rec. Trav. Chem. Pays- Bas, 83, 367 (1964).

    Article  CAS  Google Scholar 

  56. E.J. Corey, M.G. Howell, A. Boston, R.L. Young and R.A. Sneen, J. Am. Chem. Soc., 78, 5036 (1956).

    Article  CAS  Google Scholar 

  57. Deuterium incorporation study using dg-toluene as solvent or D20 for quenching disclosed that D20 was not incorporated but deuterium in dg- toluene was incorporated to a certain extent. The detail will be reported elsewhere. See also ref. la).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this paper

Cite this paper

Ohsawa, T., Oishi, T. (1984). Dissolving Metal Reduction. In: Atwood, J.L., Davies, J.E.D., Osa, T. (eds) Clathrate Compounds, Molecular Inclusion Phenomena, and Cyclodextrins. Advances in Inclusion Science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5376-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5376-5_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8872-5

  • Online ISBN: 978-94-009-5376-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics