Skip to main content

Microscopic Form Factors for Cluster Transfer Reactions

  • Chapter

Abstract

The nuclear-structure aspects of the distorted-wave Born approximation (DWBA) model of direct cluster transfer reactions are reviewed. Results for the ingredients of the DWBA form factor are presented for the α+t, α+d and α+160 subsystems. The construction of realistic form factors for practical DWBA calculations is discussed. It is concluded that the use of realistic form factors is mainly important for the determination of the absolute spectroscopic factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. R. Satchler, Direct nuclear reactions (Clarendon, Oxford, 1983)

    Google Scholar 

  2. T. Fliessbach, Z. Phys. A272 (1975) 39

    ADS  Google Scholar 

  3. R. G. Newton, Scattering theory of waves and particles (McGraw-Hill, New York, 1966) p. 487

    Google Scholar 

  4. H. Horiuchi, Prog. Theor. Phys. 71 (1984) 535

    Article  ADS  Google Scholar 

  5. T. Fliessbach, Z. Phys. A278 (1976) 353

    ADS  Google Scholar 

  6. K. F. Pál and R. G. Lovas, in Proc. Int. Symp. on in-beam nuclear spectroscopy, Debrecen, May, 1984, ed. Zs. Dombrádi and T. Fényes (Akadémiai Kiadó, Budapest, to appear in 1984 )

    Google Scholar 

  7. R. G. Lovas, to be published

    Google Scholar 

  8. D. Kurath and I. S. Towner, Nucl. Phys. A222 (1974) 1;

    ADS  Google Scholar 

  9. B. Apagyi, G. Fái and J. Németh, Nucl. Phys. A272 (1976) 303

    ADS  Google Scholar 

  10. I. V. Kurdyumov, V. G. Neudatchin and Yu. F. Smirnov, Phys. Lett. 3IB (1970) 426

    ADS  Google Scholar 

  11. J. Cook, Nucl. Phys. A417 (1984) 477

    ADS  Google Scholar 

  12. P. Singh and A. K. Jain, Phys. Rev. C25 (1982) 1705

    ADS  Google Scholar 

  13. B. Apagyi and T. Vertse, Phys. Rev. C21 (1980) 779

    ADS  Google Scholar 

  14. A. Hasegawa and S. Nagata, Prog, Theor. Phys. 45 (1971) 1786;

    Article  ADS  Google Scholar 

  15. H. Horiuchi, Prog. Theor. Phys. 47 (1972) 1058

    Article  ADS  Google Scholar 

  16. K. F. Pál, R. G. Lovas, M. A. Nagarajan, B. Gyarmati and T. Vertse, Nucl. Phys. A402 (1983) 114

    ADS  Google Scholar 

  17. R. G. Lovas, K. F. Pál and M. A. Nagarajan, Nucl. Phys. A402 (1983) 141

    ADS  Google Scholar 

  18. R. G. Lovas and K. F. Pál, Nucl. Phys. A424 (1984) 143

    ADS  Google Scholar 

  19. H. Horiuchi, Prog. Theor. Phys. Suppl. 62 (1977) 90

    Article  ADS  Google Scholar 

  20. R. Beck, F. Dickmann and A. T. Kruppa, contribution to this Conference

    Google Scholar 

  21. D. M. Brink, in Proc. Int. School E. Fermi, Course XXXVI, ed. C. Bloch (Academic, New York, 1966) p. 247

    Google Scholar 

  22. S. Saito, Prog. Theor. Phys. Suppl. 62 (1977) 11

    Article  ADS  Google Scholar 

  23. H. Friedrich and L. F. Canto, Nucl. Phys. A291 (1977) 249;

    ADS  Google Scholar 

  24. H. Friedrich, Phys. Reports 74 (1981) 209

    Article  ADS  Google Scholar 

  25. A. B. Volkov, Nucl. Phys. 74 (1965) 33

    Article  Google Scholar 

  26. D, Wintgen, H. Friedrich and K. Langanke, Nucl. Phys. A408 (1983) 239

    ADS  Google Scholar 

  27. V. B. Subbotin, V. M. Semjonov, K. A. Gridnev and E. F. Hefter, Phys. Rev. C28 (1983) 1618

    ADS  Google Scholar 

  28. M. V. Mihailović and M. Poljšak, Nucl. Phys. A311 (1978) 377;

    ADS  Google Scholar 

  29. V. K. Sharma and M. A. Nagarajan, Daresbury Laboratory report DL/NUC/P124T (1980);

    Google Scholar 

  30. R. Beck, R. Krivec and M. V. Mihailović, Nucl. Phys. A363 (1981) 365

    ADS  Google Scholar 

  31. H. Kanada, T. Kaneko and Y. C. Tang, Nucl. Phys. A380 (1982) 87

    ADS  Google Scholar 

  32. T. Kajino, T. Matsuse and A. Arima, Nucl. Phys. A414 (1984) 185

    Google Scholar 

  33. B. Buck, C. B. Dover and J. P. Vary, Phys. Rev. C11 (1975) 1803

    ADS  Google Scholar 

  34. D. M. Brink and E. Boeker, Nucl. Phys. A91 (1967) 1

    ADS  Google Scholar 

  35. R. E. Brown and Y. C. Tang, Phys. Rev. 176 (1968) 1235

    Article  ADS  Google Scholar 

  36. S. Saito, in Proc. INS-IPCR Symp. on cluster structure of nuclei, Tokyo, 1975 (IPCR Cyclotron Progress Report, Suppl. 4) p. 141

    Google Scholar 

  37. H. Walliser and Y. C. Tang, Phys. Lett. 135B (1984) 344

    ADS  Google Scholar 

  38. R. Beck, F. Dickmann and R. G. Lovas, to be published

    Google Scholar 

  39. R. Beck, F. Dickmann and R. G. Lovas, contribution to this Conference

    Google Scholar 

  40. G. Bertsch, J. Borysowicz, H. McManus and W. G. Love, Nucl. Phys. A284 (1977) 399

    ADS  Google Scholar 

  41. T. Matsuse, M. Kamimura and Y. Fukushima, Prog. Theor. Phys. 53 (1975) 706

    Article  ADS  Google Scholar 

  42. K.-I. Kubo, F. Nemoto and H. Bandō, Nucl. Phys. A224 (1974) 573

    ADS  Google Scholar 

  43. K.-I. Kubo and M. Hirata, Nucl. Phys. A187 (1972) 186

    ADS  Google Scholar 

  44. K. F. Pál and R. G. Lovas, to be published

    Google Scholar 

  45. N. Anantaraman, H. E. Gove, R. A. Lindgren, J. Tōke, J. P. Trentelman, J. P. Draayer, F. C. Jundt and G. Guillaume, Nucl. Phys. A313 (1979) 445

    ADS  Google Scholar 

  46. R. Shyam, R. G. Lovas, K. F. Pal, V. K. Sharma and M. A. Nagarajan, Daresbury Laboratory preprint DL/NUC/P190T (1983)

    Google Scholar 

  47. F. D. Becchetti, E. R, Flynn, D. L. Hanson and J. W. Sunier, Nucl. Phys. A305 (1978) 293

    ADS  Google Scholar 

  48. K. Aoki and H. Horiuchi, Prog. Theor. Phys. 69 (1983) 1154

    Article  ADS  Google Scholar 

  49. F. D. Becchetti, D. Overway, J. Janecke and W. W. Jacobs, Nucl. Phys. A344 (1980) 336;

    ADS  Google Scholar 

  50. D. R. Chakrabarty and M. A. Eswaran, Phys. Rev. C25 (1982) 1933

    ADS  Google Scholar 

  51. F. D. Becchetti, in Clustering aspects of nuclear structure and nuclear reactions, ed. W. T. H. Van Oers et al. (AIP, New York, 1978) p. 308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Lovas, R.G. (1985). Microscopic Form Factors for Cluster Transfer Reactions. In: Lilley, J.S., Nagarajan, M.A. (eds) Clustering Aspects of Nuclear Structure. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5366-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5366-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8868-8

  • Online ISBN: 978-94-009-5366-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics