Skip to main content

Fusion and Transfer of Triplet Excitons in Isotopically Mixed Naphthalene Crystals

  • Chapter
Structure and Dynamics of Molecular Systems

Part of the book series: Structure and Dynamics of Molecular Systems ((SDMS,volume 1))

  • 68 Accesses

Abstract

Results on temperature and concentration dependences of triplet exciton fusion and triplet energy transfer in isotopically mixed naphthalene crystals are presented. Exciton fusion in the trap states is investigated by delayed fluorescence emission. Energy transfer efficiency is analyzed by the relative transfer yield to a supertrap acting as a sensor. The temperature dependences observed on delayed fluorescence and on energy transfer are similar, with a threshold at T ∿ 5K, suggesting a common origin for both processes. Numerical solutions of a master equation in a two-dimensional crystal are provided. The results may be understood by considering a two optical phonon mechanism (with a phonon energy equal to 40 cm-1) and by taking into account the long-range dipolar interaction between traps due to the spin-orbit coupling of triplet states to upper singlet states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Suna, Phys. Rev. B: Solid State 1 (1970) 1716.

    Google Scholar 

  2. S.E. Webber, C.E. Swenberg, Chem. Phys. 49 (1980) 231.

    Article  CAS  Google Scholar 

  3. V.M. Kenkre, Y.M. Wang, Chem. Phys. Letters 87 (1982) 263.

    Article  CAS  Google Scholar 

  4. V.M. Kenkre, Phys. Rev. B: Condensed Matter 22 (1982) 2089.

    Article  Google Scholar 

  5. H. Sternlicht, G.C. Nieman, G.W. Robinson, J. Chem. Phys. 38 (1963) 1326.

    Article  CAS  Google Scholar 

  6. P.W. Klymko, R. Kopelman, J. Chem. Phys. 86 (1982) 3686.

    Article  CAS  Google Scholar 

  7. R. Kopelman, E.M. Monberg, F.W. Ochs, Chem. Phys. 19 (1977) 413.

    Article  CAS  Google Scholar 

  8. F.B. Tudron, S.D. Colson, J. Chem. Phys. 65 (1976) 4184.

    Article  CAS  Google Scholar 

  9. R. Brown, J.P. Lemaistre, J. Mégel, Ph. Pée, F. Dupuy, Ph. Kottis, J. Chem. Phys. 76 (1982) 5719.

    Article  CAS  Google Scholar 

  10. A.H. Francis, R. Kopelman, Topics in applied physics 49 (1981) 241 and references therein.

    CAS  Google Scholar 

  11. R. Silbey, in: Modern problems in condensed matter sciences vol.3 ed. V.M. Agranovich, R.M. Hochstrasser; North-Holland, Amsterdam (1983).

    Google Scholar 

  12. Ph. Pée, Y. Rebière, F. Dupuy, R. Brown, Ph. Kottis, J.P. Lemaistre, J. Phys. Chem. 88 (1984) 959.

    Article  Google Scholar 

  13. B.S. Sommer, J. Jortner, J. Chem. Phys. 50 (1969) 839.

    Article  CAS  Google Scholar 

  14. V.L. Broude, A.V. Leiderman, T.G. Tratas, Soviet Phys. Solid State 13 (1972) 3058.

    Google Scholar 

  15. F. Dupuy, Ph. Pée, R. Lalanne, J.P. Lemaistre, C. Vaucamps, H. Port, Ph. Kottis, Mol. Phys. 35 (1978) 595.

    Article  CAS  Google Scholar 

  16. Complete definition of the system requires also knowlegde of the host band spectra {17}. However, in this low temperature work at T = 1.6K, the traps are the only dynamically active sites.

    Google Scholar 

  17. Ph. Pée, J.P. Lemaistre, F. Dupuy, R. Brown, J. Mégel, Ph. Kottis, Chem. Phys. 64 (1982) 389.

    Article  Google Scholar 

  18. Ph. Pée, R. Brown, F. Dupuy, Ph. Kottis, J.P. Lemaistre, Chem. Phys. 35 (1978) 429.

    Article  Google Scholar 

  19. J.P. Lemaistre, Ph. Pée, M. Béguery, F. Dupuy, J. Mégel, R. Brown, Ph. Kottis, Chem. Phys. Letters 89 (1982) 207.

    Article  CAS  Google Scholar 

  20. P. Avakian, R.E. Merrifield, Phys. Rev. Letters 13 (1964) 541.

    Article  CAS  Google Scholar 

  21. V. Em, P. Avakian, R.E. Merrifield, Phys. Rev. 148 (1966) 862.

    Google Scholar 

  22. R. Kopelman, E.M. Monberg, F.W. Ochs, P.N. Prasad, J. Chem. Phys. 62 (1975) 292.

    Article  Google Scholar 

  23. R7 Brown, Ph. Pée, F. Dupuy, Ph. Kottis, J. Physics C: Solid State Phys. to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Pée, P., Brown, R., Dupuy, F., Rebière, Y., Kottis, P., Lemaistre, JP. (1985). Fusion and Transfer of Triplet Excitons in Isotopically Mixed Naphthalene Crystals. In: Daudel, R., Korb, JP., Lemaistre, JP., Maruani, J. (eds) Structure and Dynamics of Molecular Systems. Structure and Dynamics of Molecular Systems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5351-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5351-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8860-2

  • Online ISBN: 978-94-009-5351-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics