Skip to main content

Parameters of Partial Orders and Graphs: Packing, Covering, and Representation

  • Chapter
Graphs and Order

Part of the book series: NATO ASI Series ((ASIC,volume 147))

Abstract

This paper surveys results concerning packing/covering parameters and representation parameters of graphs and posets. We start from the poset param¬eters known as width and dimension. We consider generalizations, related ques¬tions, and analogous parameters for graphs and/or directed graphs.

Dilworth’s Theorem states that a poset with finite width (maximum antichain size) w can be covered with w chains; we review the known proofs. Greene and Kleitman generalized this to unions of k antichains, called k-famities, proving that the maximum size of a k-family equals the minimum in a dual chain-covering problem. Chain coverings yielding the optimal bound on k-family size are k-saturated partitions. We review proofs and discuss other aspects of the theory of saturated partitions. For example, chain coverings become cliques in the graph context or path coverings in the context of directed graphs, and duality questions still apply. Other topics include duality questions for product orders or product graphs, and the study of element sets that meet all maximal chains in a poset or maximal cliques in a graph.

Packing and covering focus on vertex subsets; “representation” expresses the entire relation as the union or intersection of a minimum number of “nice” relations. We review results on order dimension (the minimum number of chains whose intersection is the poset) and study various dimension parameters for graphs and digraphs. The Ferrers dimension of a digraph D is the minimum number of “Ferrers digraphs” whose intersection is D. Bouchet and Cogis proved that the Ferrers dimension of a reflexive, transitive, antisymmetric relation equals its order dimension as a poset. For undirected graphs, we discuss threshold dimension, product dimension, and boxicity. In each case we seek results analogous to those for order dimension of posets. The last of these leads to a general discussion of intersection representations of graphs, multiple inter¬section parameters, and edge-covering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aigner, Lexicographic matching in Boolean algebras. J. Comb. Theory B14 (1973), 187–194.

    MathSciNet  MATH  Google Scholar 

  2. M. Aigner, Symmetrische Zerlegung von Kettenprodukten. Monats. Math79 (1975), 177–189.

    MathSciNet  MATH  Google Scholar 

  3. M. Aigner, Combinatorial Theory. Springer-Verlag, New York (1979).

    MATH  Google Scholar 

  4. M. Aigner and G. Prins, Uniquely partially orderable graphs. J. London Math. Soc. (2) 3(1971), 260–266.

    MathSciNet  MATH  Google Scholar 

  5. M.O. Albertson, A lower bound for the independence number of a planar graph. J. Comb. Th (B) 20(1976, 84–93.

    MathSciNet  MATH  Google Scholar 

  6. M.O. Albertson, A new paradigm for duality questions, preprint.

    Google Scholar 

  7. M.O. Albertson and D.M. Berman, The chromatic difference sequence of a graph. J. Comb. Theory B 29 (1980), 1–12.

    MathSciNet  Google Scholar 

  8. M.O. Albertson and D.M. Berman, Critical graphs for chromatic difference sequences. Disc. Math 31 (1980), 225–233.

    MathSciNet  MATH  Google Scholar 

  9. M.O. Albertson, P.A. Catlin, and L. Gibbons, Homomorphisms of 3-chromatic graphs, II. preprint.

    Google Scholar 

  10. M.O. Albertson and K.L. Collins, Duality and perfection for r-clique graphs. J. Comb. Th (B), to appear.

    Google Scholar 

  11. M.O. Albertson and K.L. Collins, Homomorphisms of 3-chromatic graphs, Disc. Math, submitted.

    Google Scholar 

  12. M.O. Albertson and J.P. Hutchinson, The independence ratio and genus of a graph. Trans. Amer. Math. Soc 226 (1977), 161–173.

    MathSciNet  MATH  Google Scholar 

  13. P. Alles, Estimation of the dimension of some types of graph by means of orthogonal Latin squares. Fachbereich Math Preprint 749, Technische Hochscule Darmstadt (1983).

    Google Scholar 

  14. P. Alles, The dimension of sums of graphs. Fachbereich Math Preprint 814, Technische Hochscule Darmstadt (1984).

    Google Scholar 

  15. P. Alles, On the dimension of sums, amalgams, and weak products of graphs, (preprint).

    Google Scholar 

  16. R. Alter and C.C. Wang, Uniquely intersectable graphs. Disc. Math 18 (1977), 217–226.

    MathSciNet  MATH  Google Scholar 

  17. L.D. Andersen, D.D. Grant, and N. Linial, Extremalk-colourable subgraphs. Ars Combinatoria 16 (1983), 259–270.

    MathSciNet  MATH  Google Scholar 

  18. J. Araoz, W.H. Cunningham, J. Edmonds, and J. Green-Krótki, Reductions to 1- matching polyhedra. Networks 13 (1983), 455–473.

    MathSciNet  MATH  Google Scholar 

  19. J.C. Arditti and H.A. Jung, The dimension of finite and infinite comparability graphs. J. London Math. Soc. (2) 21(1980), 81–38

    MathSciNet  Google Scholar 

  20. J. Ayel, Longest paths in bipartite digraphs. Disc. Math 40 (1982), 115–118.

    MathSciNet  MATH  Google Scholar 

  21. K.A. Baker, Dimension, join-independence, and breadth in partially ordered sets, (1961), unpublished.

    Google Scholar 

  22. K.A. Baker, P.C. Fishburn, and F.S. Roberts, Partial orders of dimension two. Networks 2(1971), 11–28.

    MathSciNet  Google Scholar 

  23. E. Balas and M.W. Padberg, Set partitioning: a survey. SIAM Review 18 (1976), 710–766.

    MathSciNet  MATH  Google Scholar 

  24. L.W. Beineke, Characterizations of derived graphs. J. Comb. Th 9 (1970), 129–135.

    MathSciNet  MATH  Google Scholar 

  25. L.W. Beineke and C.M. Zamfirescu, Connection digraphs and second-order line graphs. Disc. Math 39 (1982), 237–254.

    MathSciNet  MATH  Google Scholar 

  26. M. Bell, The space of complete subgraphs of a graph. Comm. Math. Univ. Card 23 (1982), 525–536.

    MATH  Google Scholar 

  27. M. Bell and J. Ginsburg, Compact spaces and spaces of maximal complete subgraphs. Trans. Amer. Math. Soc, to appear.

    Google Scholar 

  28. C. Benzaken, P.L. Hammer, and D. de Werra, Threshold signed graphs. R.R. 237, IMAC, Univ. Grenoble (1981).

    Google Scholar 

  29. S. Benzer, On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. USA 45 (1959), 1607–1620.

    Google Scholar 

  30. C. Berge, Farbung von Graphen, deren samtliche bzw. ungerade Kreise starr sind. Mas. Z. Martin-Luther-Univ., Halle-Wittenberg Math.-Natur, Reihe (1961), 114–115.

    Google Scholar 

  31. C. Berge, Some classes of perfect graphs, in Graph Theory and Theoretical Physics (F. Harary, ed.). Academic Press, New York (1967), 155–165.

    Google Scholar 

  32. C. Berge, Graphs and Hypergraphs. North-Holland, New York (1973).

    MATH  Google Scholar 

  33. C. Berge, Fractional Graph Theory, ISI Lecture Notes 1, Macmillan (1978).

    MATH  Google Scholar 

  34. C. Berge, Packing problems and hypergraph theory: a survey. Annals of Disc. Math 4 (1979), 3–37.

    MathSciNet  MATH  Google Scholar 

  35. C. Berge, Diperfect graphs. Combinatorics and Graph Theory (Calcutta, 1980). Lect. Notes Math. 885, Springer-Verlag (1981), 1–8.

    Google Scholar 

  36. C. Berge, k-optimal partitions of a directed graph. Europ. J. Comb3 (1982), 97–101.

    MathSciNet  MATH  Google Scholar 

  37. C. Berge, Path partitions in directed graphs. Annals of Disc. Math. 17(1983), 59–63.

    MATH  Google Scholar 

  38. C. Berge, Chain decompositions ofOrdered Sets and optimal partitions of directed graphs, this volume.

    Google Scholar 

  39. C. Berge and P. Duchet, Strongly perfect graphs, in Topics in Perfect Graphs (C. Berge and V. Chvatal, eds.) to appear.

    Google Scholar 

  40. J.C. Bermond et al. Cahiers Centre Etudes Rech. Oper 20(1978), 325–329.

    Google Scholar 

  41. F. Bemhart and P.C. Kainen, The book thickness of a graph. J. Comb. Th. (B). 27 (1979), 320–331.

    Google Scholar 

  42. R.E. Bixby, A composition for perfect graphs, inTopics in Perfect Graphs (C. Berge and V. Chvatal, eds.), to appear.

    Google Scholar 

  43. K.P. Bogart, Maximal dimensional partially ordered sets I. Hiraguchi’s Theorem. Disc. Math 5 (1973), 21–32.

    MathSciNet  MATH  Google Scholar 

  44. K.P. Bogart, I. Rabinovitch, and W.T. Trotter, A bound on the dimension of interval orders, J. Comb. Th. (A) 21 (1976), 319–328.

    MathSciNet  MATH  Google Scholar 

  45. K.P. Bogart and W.T. Trotter, Maximal dimensional partiallyOrdered SetsII: Characterization of2n-element posets with dimensionn. Disc. Math. 5 (1973), 33–45.

    MathSciNet  MATH  Google Scholar 

  46. B. Bollobás, Extremal Graph Theory. Academic Press, New York (1980).

    Google Scholar 

  47. J.A. Bondy and C. Thomassen, A short proof of Meyniel’s theorem. Disc. Math 19 (1977), 195–197.

    MathSciNet  MATH  Google Scholar 

  48. J.A. Bondy and S.C. Locke, Maximum bipartite subgraphs in triangle-free cubic graphs, to appear.

    Google Scholar 

  49. K.S. Booth and G.S. Leuker, Linear algorithms to recognize interval graphs and test for the consecutive ones property. Proc. 7th ACM Symp. Th. Comp. (1975), 255–265.

    Google Scholar 

  50. K.S. Booth and G.S. Leuker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Assoc. Comp. Syst. Sci 13 (1976), 335–379.

    MATH  Google Scholar 

  51. A. Boucher, It’s hard to color antirectangles. SIAM J. Alg. Disc. Meth. (1984).

    Google Scholar 

  52. A. Bouchet, Etude des ordonn’es finis — applications. These d’Etat, Grenoble (1971). See also, Codages et dimensions de relations binaires, in Ordres: Description et Roles (Proc. Lyon 1982, (M. Pouzet, ed.) Annals of Discrete Math. (1984), 387–396.

    Google Scholar 

  53. A. Bouchet, Etude des ordonn’es finis — applications. These d’Etat, Grenoble (1971). See also, Codages et dimensions de relations binaires, in Ordres: Description et Roles (Proc. Lyon 1982, (M. Pouzet, ed.) Annals of Discrete Math. (1984), 387–396.

    Google Scholar 

  54. A. Bouchet, Etude des ordonn’es finis — applications. These d’Etat, Grenoble (1971). See also, Codages et dimensions de relations binaires, in Ordres: Description et Roles (Proc. Lyon 1982, (M. Pouzet, ed.) Annals of Discrete Math. (1984), 387–396.

    Google Scholar 

  55. V. Bouchitte, M. Habib, and R. Jegou, On the greedy dimension of a partial order. Order (to appear).

    Google Scholar 

  56. G.H. Bradley, Transformation of integer programs to knapsack problems. Disc. Math 1 (1971), 29–45.

    MathSciNet  MATH  Google Scholar 

  57. R.C. Brigham and R.D. Dutton, Graphs which, with their complements, have certain clique covering numbers. Disc. Math 34 (1981), 1–7.

    MathSciNet  MATH  Google Scholar 

  58. R.C. Brigham and R.D. Dutton, On clique covers and independence numbers of graphs. Disc. Math 44 (1983), 139–144.

    MathSciNet  MATH  Google Scholar 

  59. R.C. Brigham and R.D. Dutton, Upper bounds on the edge clique cover number of a graph, mimeograph, Univ. Central Florida (1983).

    Google Scholar 

  60. V.W. Bryant and K.G. Harris, Transitive Graphs. J. Lond. Math. Soc 11 (1975), 123–128.

    MathSciNet  MATH  Google Scholar 

  61. M.A. Buckingham and M.C. Golumbic, Partitionable graphs, circle graphs, and the strong perfect graph conjecture. Disc. Math 44 (1983), 45–54.

    MathSciNet  MATH  Google Scholar 

  62. P. Buneman, A characterization of rigid circuit graphs, Disc. Math. 9(1974), 205–212.

    MathSciNet  MATH  Google Scholar 

  63. M. Burlet, Etude Algorithmique de Certaines Classes de Graphs Parfait. 3rd cycle doctorate thesis, Sci. Med. Univ. Grenoble.

    Google Scholar 

  64. M. Burlet and J.P. Uhry, Parity graphs, inBonn Workshop on Combinatorial Optimization, 1980 (B. Korte et al, eds.) Annals of Disc. Math. 16(1982), 1–26.

    Google Scholar 

  65. J.F. Buss and P.W. Shor, On the pagenumber of planar graphs, (preprint).

    Google Scholar 

  66. L. Cacetta and N.J. Pullman, Clique covering numbers of cubic graphs. Proc. Xth Austral. Conf. Comb. Math., Adelaide 1982. Springer-Verlag Lect. Notes Math. 1036(1983), 121–127.

    Google Scholar 

  67. L. Cacetta and N.J. Pullman, Clique covering numbers of regular graphs. Ars Combinatoria 15 (1983), 201–230.

    MathSciNet  Google Scholar 

  68. K.B. Cameron and J. Edmonds, Algorithms for optimum antichains. Proc. 10th SE Conf. Comb., Graph Th., and Comp. (F. Hoffman et al, eds.), Utilitas Math., Winnipeg (1979), 229–240.

    Google Scholar 

  69. K.B. Cameron, Polyhedral and algorithmic ramifications of antichains, Ph.D. thesis, Univ. of Waterloo, Waterloo, Ont (1982).

    Google Scholar 

  70. E.R. Canfield, A Sperner property preserved by products. Lin. Multilin. Alg 9 (1980), 151–157.

    MathSciNet  MATH  Google Scholar 

  71. P.A. Catlin, Graph homomorphism into the 5-cycle. J. Comb. Th. (B) submitted

    Google Scholar 

  72. P.A. Catlin, Homomorphism as a generalization of graph coloring, preprint.

    Google Scholar 

  73. S. Chaiken, D.J. Kleitman, M. Saks, and J. Shearer, Covering regions with rectangles. SIAM J. Alg. Disc. Meth. 2(1981),

    Google Scholar 

  74. S.A. Choudom, K.R. Parthasarathy, and G. Ravindra, Line-clique cover number of a graph. Proc. Indian Nat. Sci. Acad 41 (1975), 289–293.

    Google Scholar 

  75. C. Christen and S.M. Selkow, Some perfect coloring properties of graphs. J. Comb. Th. (B) 27 (1979), 49–59.

    MathSciNet  MATH  Google Scholar 

  76. F.R.K. Chung, Problems and results on several graph labeling problems. Proc. 5th Intl. Conf. Graph Th., Kalamazoo 1984. (to appear).

    Google Scholar 

  77. V. Chvatal, Perfectly ordered graphs, McGill Univ. Rept. SOCS 81.28 (1981).

    Google Scholar 

  78. V. Chvatal and P.L. Hammer, Aggregation of inequalities in integer programming. Annals Disc. Math. 1(1977), 145–162. Contains the material of “Set packing and threshold graphs,” Univ. of Waterloo Rept. CORR 73-21 (1973).

    MathSciNet  Google Scholar 

  79. V. Chvatal and C.T. Hoang, The P4 structure of perfect graphs, to appear.

    Google Scholar 

  80. O. Cogis, Determination d’un preordre total contenant un preordre et contenu dans une relation de Ferrers lorsque leur domaine commun est fini. C. R. Acad. Sci. Paris 283 (A) (1976), 1007–1009.

    MathSciNet  MATH  Google Scholar 

  81. O. Cogis, Sur la dimension d’un graph oriente. C. R. Acad. Sci. Paris 288 (A) (1979), 639–641.

    MathSciNet  MATH  Google Scholar 

  82. O. Cogis, Ferrers digraphs and threshold graphs. Disc. Math. 38(1982), 33–46. Includes most of “La dimension Ferrers des graphes orientes,” These de Doctorat d’Etat, Universite Pierre et Marie Curie, Paris (1980).

    MathSciNet  MATH  Google Scholar 

  83. O. Cogis, Ferrers digraphs and threshold graphs. Disc. Math. 38(1982), 33–46. Includes most of “La dimension Ferrers des graphes orientes,” These de Doctorat d’Etat, Universite Pierre et Marie Curie, Paris (1980).

    Google Scholar 

  84. O. Cogis, On the Ferrers dimension of a digraph. Disc. Math 38 (1982), 47–52.

    MathSciNet  MATH  Google Scholar 

  85. O. Cogis, A characterization of digraphs with Ferrers dimension 2. to appear.

    Google Scholar 

  86. J.E. Cohen, Interval graphs and food webs: a finding and a problem. RAND Corporation Document 17696-PR (1968).

    Google Scholar 

  87. J.E. Cohen, Food webs and the dimensionality of trophic niche space. Proc. Natl. Acad. Sci 74 (1977), 4533–4536.

    Google Scholar 

  88. J.E. Cohen, Food Webs and Niche Space. Princeton Univ Press, Princeton (1978).

    Google Scholar 

  89. J.E. Cohen, Recent progress and problems in food web theory. In Current Trends in Food Web Theory (D.L. DeAngelis et al, eds.) Oak Ridge Natl. Lab. Tech Rept. ORNL/TM-8643 (1983).

    Google Scholar 

  90. C.J. Colbourn, On testing isomorphism of permutation graphs. Networks 11 (1981), 13–21.

    MathSciNet  MATH  Google Scholar 

  91. M.B. Cozzens, Higher and multi-dimensional analogues of interval graphs, Ph.D. Thesis, Rutgers (1981).

    Google Scholar 

  92. M.B. Cozzens, The NP-completeness of the boxicity of a graph, mimeograph, Northeastern Univ. (1982).

    Google Scholar 

  93. M.B. Cozzens and R. Leibowitz, Threshold dimension of graphs. SIAM J. Alg. Disc. Meth (to appear).

    Google Scholar 

  94. M.B. Cozzens and R. Leibowitz, Threshold dimension and psychological scaling, (preprint).

    Google Scholar 

  95. M.B. Cozzens and F.S. Roberts, Double semiorders and double indifference graphs. SIAM J. Alg. Disc. Meth 3 (1982), 566–583.

    MathSciNet  MATH  Google Scholar 

  96. M.B. Cozzens and F.S. Roberts, Computing the boxicity of a graph by covering its complement by cointerval graphs. Disc. Appl. Math6 (1983), 217–228.

    MathSciNet  MATH  Google Scholar 

  97. M.B. Cozzens and F.S. Roberts, Onk-suitable sets of arrangements and the boxicity of a graph. J. Comb. Inf. Syst. Sci (to appear).

    Google Scholar 

  98. M.B. Cozzens and F.S. Roberts, Multi-dimensional intersection graphs: cubicity, circular dimension, overlap dimension, (preprint).

    Google Scholar 

  99. M.B. Cozzens and D.-I. Wang, Closed neighborhood containment graphs. Proc. 15th SE Conf. Comb. Graph Th. Comp (to appear).

    Google Scholar 

  100. G.B. Dantzig and A. Hoffman, On a theorem of Dilworth. Linear Inequalities and related systems (H.W. Kuhn and A.W. Tucker, eds.) Annals of Math. Studies 38(1966), 207–214.

    Google Scholar 

  101. D.E. Daykin, Finite sets, order representations of integers, and inequalities. In this volume.

    Google Scholar 

  102. N. deBruijn, C. Tengbergen, D. Kruyswijk, On the set of divisors of a number. Nieuw Arch. Wiskunde 23 (1951), 191–193.

    MathSciNet  Google Scholar 

  103. D. de Caen, D.A. Gregory, and N.J. Pullman, Clique coverings of paths and cycles. Annals Disc. Math. (1984).

    Google Scholar 

  104. W.A. Denig, A class of matroids derived from saturated chain partitions of par¬tially ordered sets. J. Comb. Th. (B) 30 (1981), 302–317.

    MathSciNet  MATH  Google Scholar 

  105. R.P. Dilworth, A decomposition theorem for partially ordered sets. Annals of Math. 51 (1950). 161–165.

    MathSciNet  MATH  Google Scholar 

  106. R.P. Dilworth, Some combinatorial problems on partially ordered sets, in Combinatorial Analysis (Proc. Symp. Appl. Math.), (Amer. Math. Soc., 1960), 85–90.

    Google Scholar 

  107. J.P. Doignon, A. Ducamp, and J.-C. Falmagne, On realizable biorders and the biorder dimension of a relation, to appear.

    Google Scholar 

  108. J.P. Doignon and J.-C. Falmagne, Matching relations and the dimensional structure of social choices, to appear.

    Google Scholar 

  109. A. Ducamp, Sur la dimension d’un ordre partiel. inTheory of Graphs, (Gordon and Breach, 1967 ).

    Google Scholar 

  110. A. Ducamp, A note on an alternative proof of the representation theorem for biorders. J. Math. Psych 18 (1978), 100–104.

    MathSciNet  MATH  Google Scholar 

  111. A. Ducamp and J.-C. Falmagne, Composite measurement. J. Math. Psych. 6(1969), 359–390.

    MathSciNet  MATH  Google Scholar 

  112. D. Duffus, I. Rival, and P. Winkler, Minimizing setups for cycle-free ordered sets. Proc. Amer. Math. Soc 85 (1982), 509–513.

    MathSciNet  MATH  Google Scholar 

  113. B. Dushnik, Concerning a certain set of arrangements. Proc. Amer. Math. Soc 1 (1950), 788–796.

    MathSciNet  MATH  Google Scholar 

  114. B. Dushnik and E.W. Miller, PartiallyOrdered Sets. Amer. J. Math 63 (1941), 600–610.

    MathSciNet  Google Scholar 

  115. R.D. Dutton and R.C. Brigham, A characterization of competition graphs. Disc. Appl. Math 6 (1983), 315–317.

    MathSciNet  MATH  Google Scholar 

  116. J. Edmonds, Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur. Stand 69B (1965), 67–72.

    Google Scholar 

  117. J. Edmonds and R. Giles, Box TDI polyhedra. (unpublished).

    Google Scholar 

  118. J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, inStudies in Integer Programming(P.L. Hammer, E.L Johnson, and B.H. Korte, eds.), Annals Disc. Math. 1(1977), 185–204.

    Google Scholar 

  119. J. Edmonds and E.L. Johnson, Matching: A well-solved class of integer linear programs. inCombinatorial Structures and their Applications, (R.K. Guy et al, eds.). Gordon and Breach, New York (1970), 89–92.

    Google Scholar 

  120. J. Edmonds and D.R. Fulkerson, Bottleneck extrema. J. Comb. Th. 8(1970), 299–306.

    MathSciNet  MATH  Google Scholar 

  121. C.S. Edwards, Some extremal properties of bipartite subgraphs. Canad. J. Math 25 (1973), 475–485.

    MathSciNet  MATH  Google Scholar 

  122. C.S. Edwards, An improved lower bound for the number of edges in a largest bipartite subgraph, in Recent Advances in Graph Theory (M. Feidler, ed.), Academia Praha, Prague (1975), 167–181.

    Google Scholar 

  123. K. Engel, Strong properties in partially ordered sets, I. Disc. Math 47 (1983), 229–234.

    MathSciNet  MATH  Google Scholar 

  124. K. Engel, Strong properties in partiallyOrdered Sets, II. Disc. Math 48 (1984), 187–196.

    MathSciNet  MATH  Google Scholar 

  125. P. Erdos, On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc 51 (1945), 898–902.

    MathSciNet  Google Scholar 

  126. P. Erdos, Graph theory and probability, II. Canad. J. Math 13 (1961), 346–352.

    MathSciNet  Google Scholar 

  127. P. Erdos, A. Goodman, and L. Posa, The representation of a graph by set intersections. Canad. J. Math 18 (1966), 106–112.

    MathSciNet  Google Scholar 

  128. P. Erdos and D.J. Kleitman, Extremal problems among subsets of a set. Discrete Math. 8 (1974), 281–294.

    MathSciNet  Google Scholar 

  129. P. Erdos, F. Harary, and W.T. Tutte, On the dimension of a graph. Mathematika 12 (1965), 118–122.

    MathSciNet  Google Scholar 

  130. P. Erdos and L. Moser, On the representation of directed graphs as unions of orderings. Math. Inst. Hung. Acad. Sci 9 (1964), 125–132.

    MathSciNet  Google Scholar 

  131. P. Erdos, E.T. Ordmann, and Y. Zalcstein, (unpublished).

    Google Scholar 

  132. P. Erdos and D.B. West, A note on interval number of graphs, (preprint).

    Google Scholar 

  133. S. Even, A. Pnueli, and A. Lempel, Permutation graphs and transitive graphs. J. Assoc. Comp. Mach 19(1972), 400–

    MathSciNet  MATH  Google Scholar 

  134. S. Fajtlowicz, The independence ratio for cubic graphs. Proc. 8th SE Conf. Comb., Graph Th., and Comp. (1977), 273–277.

    Google Scholar 

  135. R.B. Feinberg, The circular dimension of a graph. Disc. Math 25 (1979), 27–31.

    MathSciNet  MATH  Google Scholar 

  136. P.C. Fishburn, Intransitive indifference with unequal indifference intervals. J. Math. Psych7 (1970), 144–149.

    MathSciNet  MATH  Google Scholar 

  137. P.C. Fishburn, Intransitive indifference in preference theory: a survey. Operations Research 18 (1970), 201–228.

    MathSciNet  Google Scholar 

  138. P.C. Fishburn, Interval representations for interval orders and semiorders. J. Math. Psych 10 (1973), 91–105.

    MathSciNet  MATH  Google Scholar 

  139. P.C. Fishburn, Maximum semiorders in interval orders. SIAM J. Alg. Disc. Meth. (1982)

    Google Scholar 

  140. P.C. Fishburn, Aspects of semiorders within interval orders. Disc. Math 40 (1982), 181–191.

    MathSciNet  MATH  Google Scholar 

  141. P.C. Fishburn, Interval lengths for interval orders: A minimization problem. Disc. Math 47 (1983), 63–82.

    MathSciNet  MATH  Google Scholar 

  142. P.C. Fishburn, On the sphericity and cubicity of graphs. J. Comb. Th. (B) 35 (1983), 309–318.

    MathSciNet  MATH  Google Scholar 

  143. P.C. Fishburn, Interval graphs and interval orders. Disc. Math, (to appear).

    Google Scholar 

  144. P.C. Fishburn, Interval Orders and Interval Graphs. Wiley (1984/5).

    Google Scholar 

  145. P.C. Fishburn and R.L. Graham, Classes of interval graphs under expanding length restrictions, (to appear).

    Google Scholar 

  146. P.C. Fishburn and J. Spencer, Directed graphs as unions of partial orders. Pac. J. Math 39 (1971), 149–161.

    MathSciNet  MATH  Google Scholar 

  147. S. Foldes and P.L. Hammer, Split graphs with Dilworth number 2. Canad. J. Math 29 (1977), 666–672.

    MathSciNet  MATH  Google Scholar 

  148. S. Foldes and P.L. Hammer, Split graphs. Proc. 8th S.E. Conf. Comb., Graph Th., Comp. (F. Hoffman, et al, eds.) Congressus Numerantium 19(Utilitas Math., 1977), 311–315.

    Google Scholar 

  149. S. Foldes and P.L. Hammer, The Dilworth number of a graph. Ann. Disc. Math 2 (1978), 211–219.

    MathSciNet  MATH  Google Scholar 

  150. S. Foldes and P.L. Hammer, On a class of matroid-producing graphs, inCombinatorics Colloq. Math. Soc. Janos Bolyai 18 (1978), 331–352.

    MathSciNet  Google Scholar 

  151. L.R. Ford and D.R. Fulkerson, Maximal flow through a network. Canad. J. Math 8 (1956), 399–404.

    MathSciNet  MATH  Google Scholar 

  152. L.R. Ford and D.R. Fulkerson, Flows in Networks, (Princeton Univ. Press, 1962 ).

    MATH  Google Scholar 

  153. S.V. Fomin, Finite partially ordered sets and Young tableaux. Soviet Math. Dokl 19 (1978), 1510–1514.

    MATH  Google Scholar 

  154. A. Frank, On chain and antichain families of a partially ordered set. J. Comb. Theory B 29 (1980), 176–184.

    MATH  Google Scholar 

  155. A. Frank, How to make a digraph strongly connected. Combinatorica 1 (1981), 145–153.

    MathSciNet  MATH  Google Scholar 

  156. D.R. Fulkerson, Note on Dilworth’s embedding theorem for partially ordered sets. Proc. Amer. Math. Soc 7 (1956), 701–702.

    MathSciNet  MATH  Google Scholar 

  157. D.R. Fulkerson, Networks, frames, blocking systems. InMathematics of the Decision Sciences (G.B. Dantzig and A.F. Vienott, eds.). Amer. Math. Soc. Lect. Appl. Math. 11(1968), 303–334.

    Google Scholar 

  158. D.R. Fulkerson, Blocking polyhedra. Graph Theory and Its Applications (B. Harris, ed.). Academic Press (1970), 93–112.

    Google Scholar 

  159. D.R. Fulkerson, Blocking and antiblocking pairs of polyhedra. Math. Programming 1 (1971), 168–194.

    MathSciNet  MATH  Google Scholar 

  160. D.R. Fulkerson, Antiblocking polyhedra. J. Comb. Th. (B) 12(1972), 50–71.

    MathSciNet  MATH  Google Scholar 

  161. D.R. Fulkerson, On the perfect graph theorem, inMath. Programming (T.C. Hu and S. Robinson, eds.) Academic Press, New York (1972), 68–76.

    Google Scholar 

  162. D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs. Pac. J. Math 15 (1965), 835–855.

    MathSciNet  MATH  Google Scholar 

  163. H. Gabai, Bounds for the boxicity of a graph, mimeo, York College, CUNY (1974).

    Google Scholar 

  164. E. Gafni, M.C. Loui, P. Tiwari, D.B. West, and S. Zaks, Lower bounds on common knowledge in distributed algorithms, with applications, preprint.

    Google Scholar 

  165. T. Gallai, Graphen mit triangulierbaren ungeraden Viekecken, Magyar Tud. Akad. Kutato Int 7A (1962), 3–36.

    MathSciNet  Google Scholar 

  166. T. Gallai, Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hung 18 (1967), 25–66.

    MathSciNet  MATH  Google Scholar 

  167. T. Gallai, On directed paths and circuits, in Theory of Graphs, Tihany (P. Erdos and G.O.H. Katona, eds.) Academic Press, New York (1968), 115–118.

    Google Scholar 

  168. T. Gallai and A.N. Milgram, Verallgemeinerung eines Graphentheoretischen Satzes vi Reedei. Acta Sci. Math. Hung 21 (1960), 181–186.

    MathSciNet  MATH  Google Scholar 

  169. E.R. Gansner, Acyclic digraphs, Young Tableaux and nilpotent matrices. SIAM J. Alg. Disc. Meth 2 (1981), 429–440.

    MathSciNet  MATH  Google Scholar 

  170. M.L. Gardner, Forbidden configurations of large girth for intersection graphs of hypergraphs. Ars Combinatoria 14 (1982), 271–278.

    MathSciNet  MATH  Google Scholar 

  171. M.R. Garey and D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness, (Freeman, 1979).

    MATH  Google Scholar 

  172. M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou, The complexity of coloring circular arcs and chords.

    Google Scholar 

  173. F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comp 1 (1972), 180–187.

    MathSciNet  MATH  Google Scholar 

  174. F. Gavril, Algorithms for a maximum clique and a maximum independent set of a circle graph. Networks 3 (1973), 261–273.

    MathSciNet  MATH  Google Scholar 

  175. F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Th (B) 16 (1974), 47–56.

    MathSciNet  MATH  Google Scholar 

  176. F. Gavril, Algorithms on circular-arc graphs. Networks 4 (1974), 357–369.

    MathSciNet  MATH  Google Scholar 

  177. F. Gavril, Some NP-complete problems on graphs. Proc. 11th Conf. Info. Sci. Syst. Johns Hopkins Univ., Baltimore (1977), 91–95.

    Google Scholar 

  178. F. Gavril, A recognition algorithm for the intersection graphs of paths in trees. Disc. Math 23 (1978), 211–227.

    MathSciNet  MATH  Google Scholar 

  179. A. Ghouila-Houri, Caracterisation des graphes nonorientes dont on peut orienter les aretes de mainiere a obtenir le graph d’une relation d’ordre, C. R. Acad. Sci. Paris 254 (1962), 1370–1371.

    MathSciNet  MATH  Google Scholar 

  180. R. Giles and R. Kannan, A characterization of threshold matroids. Disc. Math 30 (1980), 181–184.

    MathSciNet  MATH  Google Scholar 

  181. P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs. Canad. J. Math 16 (1964), 539–548.

    MathSciNet  MATH  Google Scholar 

  182. J. Ginsburg, Compactness and subsets ofOrdered Sets that meet every maximal chain, to appear.

    Google Scholar 

  183. J. Ginsburg, I. Rival, and B. Sands, Antichains and finite sets that meet all maximal chains, to appear.

    Google Scholar 

  184. M.C. Golumbic, Comparability graphs and a new matroid. J. Comb. Th. (B) 22 (1977), 68–90.

    MathSciNet  MATH  Google Scholar 

  185. M.C. Golumbic, The complexity of comparability graph recognition and coloring. Computing 18 (1977), 199–203.

    MathSciNet  MATH  Google Scholar 

  186. M.C. Golumbic, Threshold graphs and synchronizing parallel processes. Combinatorics, (A. Hajnal and V.T. Sos, eds.). Colloq. Math. Soc. Janos Bolyai 18(1978), 419–428.

    Google Scholar 

  187. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press (1980).

    MATH  Google Scholar 

  188. M.C. Golumbic and R.E. Jamison, The overlap graphs of paths in a tree. J. Comb. Th (B)(to appear).

    Google Scholar 

  189. M.C. Golumbic and R.E. Jamison, Algorithmic aspects of overlapping paths in a tree. Disc. Math (to appear).

    Google Scholar 

  190. M.C. Golumbic and C.L. Monma, A generalization of interval graphs with tolerances. Proc 18th S.E. Conf. Comb., GT, and Comp Utilitas Math. (1982).

    Google Scholar 

  191. M.C. Golumbic, C.L. Monma, and W.T. Trotter, Tolerance graphs, (to appear).

    Google Scholar 

  192. M.C. Golumbic, D. Rotem, and J. Urrutia, Comparability graphs and intersection graphs. Disc. Math (to appear).

    Google Scholar 

  193. R.L. Graham and F.R.K. Chung, On multicolor Ramsey numbers for complete bipartite graphs. J. Comb. Th. (B) 18 (1975), 164–169.

    MathSciNet  MATH  Google Scholar 

  194. R.L. Graham and L.H. Harper, Some results on matching in bipartite graphs. SIAM J. Appl. Math 17 (1969), 1017–1022.

    MathSciNet  MATH  Google Scholar 

  195. C. Greene, An extension of Schensted’s theorem. Advances in Math 14 (1974), 254–265.

    MathSciNet  MATH  Google Scholar 

  196. C. Greene, Sperner families and partitions of a partially ordered set. Combinatorics (Hall and J.H. Van Lint), Math. Center Tracts 56(1974), 91–106.

    Google Scholar 

  197. C. Greene, Some partitions associated with a partially ordered set. J. Comb. Th. (A) 20 (1976), 69–79.

    MathSciNet  MATH  Google Scholar 

  198. C. Greene and D.J. Kleitman, The structure of Spernerk-families. J. Comb. Th. (A) 20 (1976), 41–68.

    MathSciNet  Google Scholar 

  199. C. Greene and D.J. Kleitman, Strong versions of Sperner’s Theorem. J. Comb. Th. (A) 20 (1976), 80–88.

    MathSciNet  MATH  Google Scholar 

  200. C. Greene and D.J. Kleitman, Proof techniques in the theory of finite sets. InStudies in Combinatorics, (G.-C. Rota, ed.), MAA Studies in Math. 17(1978) 22–79.

    Google Scholar 

  201. D.A. Gregory and N.J. Pullman, On a clique covering problem of Orlin. Disc. Math 41 (1982), 97–99.

    MathSciNet  MATH  Google Scholar 

  202. J.R. Griggs, Sufficient conditions for a symmetric chain order. SIAM J. Appl. Math 32 (1977), 807–809.

    MathSciNet  MATH  Google Scholar 

  203. J.R. Griggs, Another three-part Sperner theorem. Studies Appl. Math. 57 (1977), 181–184.

    MathSciNet  Google Scholar 

  204. J.R. Griggs, Extremal values of the interval number of a graph, II. Discrete Math. 28 (1979), 37–47.

    MathSciNet  Google Scholar 

  205. J.R. Griggs, On chains and Spernerk-families in ranked posets. J. Comb. Theory A 28 (1980), 156–168.

    MathSciNet  MATH  Google Scholar 

  206. J.R. Griggs, The Littlewood-Offord problem: tightest packing and anm-part Sperner theorem. Europ. J Comb 1 (1980), 225–234.

    MathSciNet  MATH  Google Scholar 

  207. J.R. Griggs, Poset measure and saturated partitions. Studies in Appl. Math 66 (1982), 91–93.

    MathSciNet  MATH  Google Scholar 

  208. J.R. Griggs, Lower bounds on the independence number in terms of the degrees. J. Comb. Th. (B) 34 (1983), 22–39.

    MathSciNet  MATH  Google Scholar 

  209. J.R. Griggs, The Sperner property, in Ordres: Description et Roles (Proc. Lyon 1982, (M. Pouzet, ed.) Annals of Discrete Math. (1984), 371–387.

    Google Scholar 

  210. J.R. Griggs and D.J. Kleitman, A three-part Sperner theorem. Disc. Math 17 (1977), 281–289.

    MathSciNet  MATH  Google Scholar 

  211. J.R. Griggs, A.M. Odlyzko, and J.B. Shearer, k-color Sperner theorems, (to appear).

    Google Scholar 

  212. J.R. Griggs, J. Stahl, and W.T. Trotter, A Sperner theorem on unrelated chains of subsets. J. Comb. Th. (A) 36 (1984), 124–127.

    MathSciNet  MATH  Google Scholar 

  213. J.R. Griggs, D. Sturtevant, and M. Saks, On chains and Spernerk-families in ranked posets, II. J. of Comb. Theory A 29 (1980), 391–394.

    MathSciNet  MATH  Google Scholar 

  214. J.R. Griggs and D.B. West, Extremal values of the interval number of a graph, I. SIAM J. Alg. Disc. Meth 1 (1980), 1–7.

    MathSciNet  MATH  Google Scholar 

  215. P.A. Grillet, Maximal chains and antichains. Funda. Math. 15 (1969), 157–167.

    MathSciNet  Google Scholar 

  216. M. Grotschel, L. Lovasz, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981), 169–197.

    MathSciNet  Google Scholar 

  217. L. Guttman, A basis for scaling quantitative data. Amer. Sociol. Rev 9 (1944), 139–150.

    MathSciNet  Google Scholar 

  218. A. Gyarfas, On the chromatic number of multiple interval graphs and overlap graphs, (preprint).

    Google Scholar 

  219. A. Gyarfas and J. Lehel, A Helly-type problem in trees, in Combinatorial Theory and Its Applications, II (P. Erdos et al, eds.) (North-Holland, 1970), 571–584.

    Google Scholar 

  220. A. Gyarfas and J. Lehel, Covering and coloring problems for relatives of intervals, (to appear).

    Google Scholar 

  221. R. Gysin, Dimension transitiv orientierbarer Graphen. Acta Math. Acad. Sci. Hungar 29 (1977), 313–316.

    MathSciNet  MATH  Google Scholar 

  222. M. Habib, Comparability invariants, in Ordres: Description et Roles (Proc. Lyon 1982), Annals of Discrete Math (1984), 371–387.

    Google Scholar 

  223. M. Habib and M.C. Maurer, On the X-join decomposition for undirected graphs. Disc. Appl. Math 3 (1979), 198–207.

    MathSciNet  Google Scholar 

  224. G. Hajos, Uber eine Art von Graphen. Int. Math. Nachr. 47 (1957), 65.

    Google Scholar 

  225. [H4] R. Halin, Some remarks on interval graphs. Combinatorica3 (1982), 297–304.

    Google Scholar 

  226. P.L. Hammer, T. Ibaraki, and U.N. Peled, Threshold numbers and threshold completions. inStudies on Graphs and Discrete Programming (P. Hansen, ed.), Annals Disc. Math 11(1981), 125–145.

    Google Scholar 

  227. P.L. Hammer, T. Ibaraki, and B. Simeone, Threshold sequences. SIAM J. Alg. Disc. Meth 2(1981), 39–49. Contains “Degree sequence of threshold graphs”, Univ. of Waterloo Rept. CORR 78–10 (1978).

    MathSciNet  MATH  Google Scholar 

  228. P.L. Hammer and B. Simeone, The splittance of a graph. Combinatorica 1 (1981), 275–284.

    MathSciNet  MATH  Google Scholar 

  229. P.L. Hammer and N.V.R. Mahadev, Bithreshold graphs, Research Report CORR 83-35, Univ. of Waterloo (1983).

    Google Scholar 

  230. P.L. Hammer, N.V.R. Mahadev, and U.N. Peled, Some properties of 2-threshold graphs, (to appear).

    Google Scholar 

  231. P. Hanlon, Counting interval graphs. Trans. Amer. Math. Soc 272 (1982), 383–426.

    MathSciNet  MATH  Google Scholar 

  232. F. Harary and J. Kabell, An intuitive approach to interval numbers of graphs. Math. Mag. 53(1980), 39–44.

    MathSciNet  MATH  Google Scholar 

  233. L.H. Harper, The morphology of partially ordered sets. J. Comb. Th (A) 17(1974), 44–58.

    MathSciNet  MATH  Google Scholar 

  234. E. Harzheim, Ein endlichkeitssatz uber die Dimension teiweise geordneter Mengen. Math. Nachr. 46(1970), 183–188.

    MathSciNet  MATH  Google Scholar 

  235. E. Harzheim, On Dilworth’s decomposition theorem. Ars Combinatoria

    Google Scholar 

  236. E. Harzheim, Combinatorial theorems on contractive mappings in power sets. Disc. Math 40 (1982), 193–202.

    MathSciNet  MATH  Google Scholar 

  237. E. Harzheim, A constructive proof for a theorem on contractive mappings in power sets. Disc. Math 45 (1983), 99–106.

    MathSciNet  MATH  Google Scholar 

  238. T.F. Havel, The combinatorial distance geometry approach to the calculation of molecular conformation. Ph.D. Thesis, Univ. Calif.—Berkeley (1982).

    Google Scholar 

  239. P.B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the PV chunk class of synchronizing primitives. SIAM J. Comp 6 (1977), 88–108.

    MathSciNet  MATH  Google Scholar 

  240. P. Hell, Subdirect products of bipartite graphs, inInfinite and Finite Sets, Colloq. Math. Soc. Janos Bolyai 10 (1973), 857–866.

    MathSciNet  Google Scholar 

  241. T. Hiraguchi, On the dimension of partially ordered sets. Sci. Rep. Kanazawa Univ. 1(1951), 77–94.

    MathSciNet  MATH  Google Scholar 

  242. T. Hiraguchi, On the dimension of orders. Sci. Rep. Kanazawa Univ. 4(1955), 1–20.

    MathSciNet  Google Scholar 

  243. C.T. Hoang, A class of perfectly orderable graphs, (preprint).

    Google Scholar 

  244. A.J. Hoffman, The uses of linear programming in ordered sets, inOrdered Sets (I. Rival, ed.) D. Reidel, Dordrecht (1982), 619–654.

    Google Scholar 

  245. A.J. Hoffman and J.B. Kruskal, Integral boundary points of convex polyhedra. in Linear Inequalities and Related Systems (H.W. Kuhn and A.W. Tucker, eds.), Annals of Math. Studies 38, Princetom Univ. Press, Princeton (1956), 223–246.

    Google Scholar 

  246. A.J. Hoffman and D.E. Schwartz, On lattice polyhedra. Combinatorics, Colloq. Math. Soc. Janos Bolyai 18 (1976), 593–598.

    MathSciNet  Google Scholar 

  247. A.J. Hoffman and D.E. Schwartz, On partitions of a partially ordered set. J. Comb. Theory B 23 (1977), 3–13.

    MathSciNet  MATH  Google Scholar 

  248. G. Hopkins and W. Staton, Extremal bipartite subgraphs of cubic triangle-free graphs. J. Graph Theory 6 (1982), 115–121.

    MathSciNet  MATH  Google Scholar 

  249. G. Hopkins and W. Staton, Maximal bipartite subgraphs. Ars Combinatoria 13 (1982), 223–226.

    MathSciNet  MATH  Google Scholar 

  250. G. Hopkins and W. Staton, Girth and independence ratioCanad. Math. Bull, (to appear).

    Google Scholar 

  251. L. Hopkins and W.T. Trotter, A bound on the interval number of a complete multipartite graph. Theory and Applications of Graphs (Chartrand et al, eds.) (Wiley, 1981), 391–407.

    Google Scholar 

  252. L. Hopkins, W.T. Trotter, and D.B. West, The interval number of the complete multipartite graph. Disc. Appl. Math, to appear.

    Google Scholar 

  253. W.N. Hsieh and D.J. Kleitman, Normalized matching in direct products of partial orders. Studies in Appl. Math 52 (1973), 285–289.

    MathSciNet  MATH  Google Scholar 

  254. T. Ibaraki and U.N. Peled, Sufficient conditions for graphs to have threshold number 2. inStudies on Graphs and Discrete Programming (P. Hansen, ed.), Annals Disc. Math 11(1981), 241–268.

    Google Scholar 

  255. T. Kameda, On maximally distant spanning trees of a graph. Computing 17(1976), 115–119.

    MathSciNet  MATH  Google Scholar 

  256. G.O.H. Katona, On a conjecture of Erdos and a stronger form of Sperner’s theorem. Stud. Sci. Math. Hung 1(1966), 59–63.

    MathSciNet  MATH  Google Scholar 

  257. G.O.H. Katona, A generalization of some generalizations of Sperner’s theorem. J. Comb. Theory B 12(1972), 72–81.

    MathSciNet  MATH  Google Scholar 

  258. G.O.H. Katona, A three-part Sperner theorem. Stud. Sci. Math. Hung 8(1973), 379–390.

    MathSciNet  Google Scholar 

  259. G.O.H. Katona, Extremal problems for hypergraphs. Combinatorics (M. Hall and J.H. Van Lint), Math. Center Tracts 56(1974), 13–42.

    Google Scholar 

  260. D. Kelly, 3-Irreducible partially ordered sets. Can. J. Math 29(1977), 367–383.

    MATH  Google Scholar 

  261. D. Kelly, On the dimension of partially ordered sets. Disc. Math 35(1981), 135–156.

    MATH  Google Scholar 

  262. D. Kelly, Comparability graphs, this volume.

    Google Scholar 

  263. D. Kelly, in Open problems. Order 1(1984), No. 2.

    Google Scholar 

  264. D. Kelly and D.A. Daykin, Strict LYM orders, (preprint).

    Google Scholar 

  265. D. Kelly and I. Rival, Planar lattices. Canad. J. Math 27(1975), 636–665.

    MathSciNet  MATH  Google Scholar 

  266. D. Kelly and I. Rival, Certain partially ordered sets of dimension 3. J. Comb. Th. (A) 18(1975), 239–242.

    MathSciNet  MATH  Google Scholar 

  267. D. Kelly, J. Schonheim, and R. Woodrow, Relating vertex colorability of graphs and hypergraphs. Univ. Calgary Math. Res. Paper #481.

    Google Scholar 

  268. D. Kelly and W.T. Trotter, Dimension theory for ordered sets, inOrdered Sets (I. Rival, ed.), North-Holland (1982), 171–212.

    Google Scholar 

  269. R. Kimble, Extremal problems in dimension theory for partially ordered sets. Ph.D. thesis, M.I.T. (1973).

    Google Scholar 

  270. D.J. Kleitman, On a lemma of Littlewood and Offord on the distribution of certain sums. Math. Zeitschr 90(1965), 251–259.

    MathSciNet  MATH  Google Scholar 

  271. D.J. Kleitman, On an extremal property of antichains in partial orders: the LYM property and some of its implications and applications. Combinatorics (Hall and J.H. Van Lint), Math. Centre Tracts 56(1974), 77–90.

    Google Scholar 

  272. D.J. Kleitman, Extremal hypergraph problems, in Surveys in Combinatorics (B. Bollobas, ed.), 7th Brit. Comb. Conf., London Math. Soc. Lec. Notes 38, Cambridge Univ. Press (1979), 44–65.

    Google Scholar 

  273. D.J. Kleitman and M. Saks, Stronger forms of the LYM inequality.

    Google Scholar 

  274. D.J. Kleitman, D. Sturtevant, M. Saks, and J. Shearer

    Google Scholar 

  275. H. Komm, On the dimension of partially ordered sets. Amer. J. Math 70(1948), 507–520.

    MathSciNet  MATH  Google Scholar 

  276. L.T. Kou, L.J. Stockmeyer, and C.K. Wong, Covering edges by cliques with regard to keyword conflicts and intersection graphs. Comm. Assoc. Comp. Mach 21(1978), 135–139.

    MathSciNet  MATH  Google Scholar 

  277. P. Krivka, The dimension of odd cycles and cartesian cubes, inAlgebraic Methods in Graph Theory (Szeged, 1978) (L. Lovasz and V.T. Sos, eds.), Coll. Math. Soc. J. Bolyai 25(1981), 435–443.

    Google Scholar 

  278. P. Krivka, Dimension of the sum of two copies of a graph. Czech. Math. J 31(1981), 514–520.

    MathSciNet  Google Scholar 

  279. C. Kruskal and D.B. West, The minimum size of a compatible matching in a bipartite graph, (submitted to 5th Intl Conf. in Graph Theory).

    Google Scholar 

  280. L. Kucera, J. Nesetril, and A. Pultr, Complexity of dimension three and some related edge-covering characteristics of graphs. Theor. Comp. Sci 11(1980), 93–106.

    MathSciNet  MATH  Google Scholar 

  281. J.R. Kung, ed. ??Recent Advances in the Theory of Young Tableaux.

    Google Scholar 

  282. E.L. Lawler, Combinatorial Optimization and Matroids. Holt, Rinehart, and Winston, New York (1976).

    MATH  Google Scholar 

  283. E.L. Lawler and O. Vornberger, The partial order dimension problem is NP-complete. (unpublished).

    Google Scholar 

  284. B. LeClerc, Arbres et dimension des ordres. Disc. Math 14(1976), 69–76.

    MathSciNet  MATH  Google Scholar 

  285. J. Lehel and Z. Tuza, Triangle-free partial graphs and edge covering theorems. Disc. Math 39(1982), 59–65.

    MathSciNet  MATH  Google Scholar 

  286. R. Leibowitz, Interval counts and threshold graphs, Ph.D. Thesis, Rutgers Univ. (1978).

    Google Scholar 

  287. R. Leibowitz, S.F. Assmann, and G.W. Peck, Interval counts of interval graphs. SIAM J. Alg. Disc. Meth 3(1982), 485–494.

    MathSciNet  MATH  Google Scholar 

  288. C.B. Lekkerkerker and J. Ch. Boland, Representation of a finite graph by a set of intervals on the real line. Fund. Math 51(1962), 45–64.

    MathSciNet  MATH  Google Scholar 

  289. G.S. Leuker and K.S. Booth, A linear time algorithm for deciding interval graph isomorhism. J. Assoc. Comp. Mach 26(1979), 183–195.

    Google Scholar 

  290. M. Lewin, On intersection multigraphs of hypergraphs. J. Comb. Th. (B) 34(1983), 229–232.

    MathSciNet  MATH  Google Scholar 

  291. B. Lindstrom, A partition of L(3,n) into saturated symmetric chains. Europ. J. Comb 1(1980), 61–63.

    MathSciNet  Google Scholar 

  292. N. Linial, Covering digraphs by paths. Disc. Math 23(1978) 257–272.

    MathSciNet  MATH  Google Scholar 

  293. N. Linial, Extending the Greene-Kleitman theorem to directed graphs. J. Comb. Th. A 30(1981), 331–334.

    MathSciNet  MATH  Google Scholar 

  294. W. Lipski, The consecutive retrieval property, interval graphs, and related topics — a survey, inProc. Conf. on Consecutive Retrieval Property (T. Kambayashi, ed.) Inst, of Comp. Sci., Polish Acad. Sci., Rept. 438 (1981), 110–141.

    Google Scholar 

  295. S.C. Locke, Maximumk-colorable subgraphs. J. Graph Theory 6(1982), 123–132.

    MathSciNet  MATH  Google Scholar 

  296. L. Lovasz, On covering of graphs, in Theory of Graphs, Tihany 1966 (P. Erdos and G. Katona, eds.) Academic Press (1969), 231–236.

    Google Scholar 

  297. L. Lovasz, Normal hypergraphs and the perfect graph conjecture. Disc. Math 2(1972), 253–267.

    MathSciNet  MATH  Google Scholar 

  298. L. Lovasz, A characterization of perfect graphs. J. Comb. Th.(B) 13(1972), 95–98.

    MathSciNet  MATH  Google Scholar 

  299. L. Lovasz, 2-matchings and 2-covers of hypergraphs. Acta Math. Acad. Sci. Hung 26(1975), 433–444.

    MathSciNet  MATH  Google Scholar 

  300. L. Lovasz, On two minimax theorems in graph theory, J. Comb. Th (B) 21(1976), 96–103.

    MathSciNet  MATH  Google Scholar 

  301. L. Lovasz, Certain duality principles in integer programming. Annals Disc. Math 1(1977), 363–374.

    MathSciNet  Google Scholar 

  302. L. Lovasz, On the shannon capacity of a graph. IEEE Trans. Info. Th 25(1979), 1–7.

    MathSciNet  MATH  Google Scholar 

  303. L. Lovasz, Perfect Graphs, inSelected Topics in Graph Theory (Academic Press, 1983), 55–87.

    Google Scholar 

  304. L. Lovasz, J. Nesetril, and A. Pultr, On a product dimension of graphs. J. Comb. Th. (B) 29(1980), 47–67.

    MathSciNet  MATH  Google Scholar 

  305. D. Lubell, A short proof of Sperner’s lemma. J. Comb. Theory (1966), 299.

    Google Scholar 

  306. D. Lubell, Local matching in the function space of a partial order. J. Comb. Th. (A) 19(1975), 154–159.

    MathSciNet  MATH  Google Scholar 

  307. C.L. Lucchesi and D.H. Younger, A minimax relation for directed graphs. J. London Math. Soc. (2) 17 (1978), 369–374.

    MathSciNet  MATH  Google Scholar 

  308. M. Las Vergnas, C. R. Acad. Sci. Paris (A) 272 (1971).

    Google Scholar 

  309. M. Las Vergnas, Sur les circuits dans les sommes completees de graphes orientes. Coll. Theorie des Graphes, Inst. Hautes Etudes Belgique (1973), 231–244.

    Google Scholar 

  310. J. Lehel, A 5-color algorithm for triangle-free overlap graphs, (preprint).

    Google Scholar 

  311. H.T. Loh and H.H. Teh, On the dimension of product graphs. Nanta Math 1(1966/67), 68–71.

    MathSciNet  Google Scholar 

  312. C. Maas, Some results about the interval number of a graph. Disc. Appl. Math 6(1983), 99–102.

    MathSciNet  MATH  Google Scholar 

  313. C. Maas, Determining the interval number of a triangle-free graph. Computing 31(1983), 347–354.

    MathSciNet  MATH  Google Scholar 

  314. C. Maas, A lower bound for the interval number of a graph. J. Computational Appl. Math 10(1984), 65–69.

    MathSciNet  MATH  Google Scholar 

  315. H. Maehara, On time graphs. Disc. Math 32(1980), 281–289.

    MathSciNet  MATH  Google Scholar 

  316. H. Maehara, Space graphs and spericity. Disc. Appl. Math 7(1984), 55–64.

    MathSciNet  MATH  Google Scholar 

  317. N.V.R. Mahadev and D. de Werra, On a class of perfectly orderable graphs. Univ. Waterloo CORR 83/27 (1983).

    Google Scholar 

  318. G. Malle, On maximum bipartite subgraphs. J. Graph Theory 6(1982), 105–113.

    MathSciNet  MATH  Google Scholar 

  319. P. Marchioro, A. Morgana, R. Petreschi, and B. Simeone, Degree sequences of matrogenic graphs, (preprint).

    Google Scholar 

  320. T.M. Matthews and W.T. Trotter, The interval number of the complete multipartite graph. 2nd Annual SE SIAM Meeting, 1978.

    Google Scholar 

  321. S.B. Maurer and I. Rabinovitch, Large minimal realizers of a partial order. Proc. Amer. Math. Soc 66(1978), 211–216.

    MathSciNet  Google Scholar 

  322. S.B. Maurer, I. Rabinovitch, and W.T. Trotter, Partially ordered sets with equal rank and dimension. Proc. 10th SE Conf. on Comb. Graph Theory, and Comp Comgressus Numerantium 29(1980), 627–637.

    Google Scholar 

  323. S.B. Maurer, I. Rabinovitch, and W.T. Trotter, Large minimal realizers of a partial order II, Disc. Math 31(1980), 297–314.

    MathSciNet  MATH  Google Scholar 

  324. S.B. Maurer, I. Rabinovitch, and W.T. Trotter, A generalization of Turan’s theorem to directed graphs. Disc. Math 32(1980), 167–189.

    MathSciNet  MATH  Google Scholar 

  325. F.R. McMorris and G.T. Myers, Some uniqueness results for upper bound graphs. Disc. Math 44(1983), 321–323.

    MathSciNet  MATH  Google Scholar 

  326. F.R. McMorris and T. Zaslavsky, Bound graphs of a partially ordered set. J. Comb. Inf. Syst. Sci 7(1982), 134–138.

    MathSciNet  MATH  Google Scholar 

  327. L.D. Meshalkin, A generalization of Sperner’s Theorem on the number of subsets of a finite set. Teor. Verojatnosti Primener 8(1963), 219–220 (in Russian)—Theory Probab. Appl (English trans.) 8(1963), 203–204.

    Google Scholar 

  328. L.D. Meshalkin, A generalization of Sperner’s Theorem on the number of subsets of a finite set. Teor. Verojatnosti Primener 8(1963), 219–220 (in Russian)—Theory Probab. Appl (English trans.) 8(1963), 203–204.

    MATH  Google Scholar 

  329. H. Meyniel, On the perfect graph conjecture. Disc. Math 16(1976), 339–342.

    MathSciNet  Google Scholar 

  330. L. Mirsky, A dual of Dilworth’s decomposition theorem. Amer. Math. Monthly 78(1971), 876–877.

    MathSciNet  MATH  Google Scholar 

  331. R.H. Mohring, Algorithmic aspects of comparability graphs, this volume.

    Google Scholar 

  332. B. Monjardet, Axiomatiques et proprietes des quasi-ordres. Math. Sci. Hum 63(1978), 51–82.

    MathSciNet  MATH  Google Scholar 

  333. B. Monjardet and E. Jacquet-Lagreze, Modelisation des preferences et quasi-ordres. Math. Sci. Hum 62(1978), 5–10.

    MATH  Google Scholar 

  334. J.I. Moore, Interval hypergraphs and D-interval hypergraphs. Disc. Math 17(1977), 173–179.

    MATH  Google Scholar 

  335. A. Mycielski, Sur le coloriage des graphes. Colloq. Math 3(1955), 161–162.

    MathSciNet  MATH  Google Scholar 

  336. G.T. Myers, Upper bound graphs of partially ordered sets. Ph.D. Thesis, Bowling Green State Univ. (1982).

    Google Scholar 

  337. C.St.J. Nash-Williams, Decomposition of finite graphs into forests. J. London Math. Soc 39(1964), 12–17.

    MathSciNet  MATH  Google Scholar 

  338. C. Nara, Split graphs with Dilworth number three. Natur. Sci. Rep. Ochanomizu Univ 33(1982), 37–44.

    MathSciNet  MATH  Google Scholar 

  339. G.L. Nemhauser, L.E. Trotter, and R.M. Nauss, Set partitioning and chain decomposition. Management Sci 20(1974), 1413–1473.

    MathSciNet  MATH  Google Scholar 

  340. J. Nesetril and A. Pultr, A Dushnik-Miller type dimension of graphs and its complexity. inFundamentals of Computation Theory, Lecture Notes in Comp. Sci. 50, Springer-Verlag (1977), 482–493.

    Google Scholar 

  341. J. Nesetril and A. Pultr, On classes of relations and graphs determined by subobjects and factorobjects. Disc. Math 22(1978), 287–300.

    MathSciNet  MATH  Google Scholar 

  342. J. Nesetril and A. Pultr, Product and other representations of graphs and related characteristics, inAlgebraic Methods in Graph Theory (Szeged, 1978) (L. Lovasz and V.T. Sos, eds.), Coll. Math. Soc. J. Bolyai 25(1981), 571–598.

    Google Scholar 

  343. J. Nesetril and V. Rodl, A simple proof of the Galvin-Ramsey property of the class of all finite graphs and a dimension of graphs. Disc. Math 23(1978), 49–55.

    MathSciNet  MATH  Google Scholar 

  344. U. Neumann, Einige Beobachtunen zur Dimension von Graphen, Diplomarbeit, Technische Hochschule Darmstadt (1982).

    Google Scholar 

  345. V. Novak, The dimension of lexicographic sums of partially ordered sets. (1961).

    Google Scholar 

  346. H. Oellrich and K. Steffens, On Dilworth’s decomposition theorem. Disc. Math 15(1976), 301–304.

    MathSciNet  MATH  Google Scholar 

  347. R.J. Opsut and F.S. Roberts, On the fleet maintenance, mobile radio frequency, task assignment, and traffic phasing problems, in The Theory and Applications of Graphs (G. Chartrand et al, eds.), Proc. 4th Intl. Cojif: Graph Th., Wiley, New York (1981), 477–492.

    Google Scholar 

  348. O. Ore. Theory of Graphs (Amer. Math. Soc., 1962), Section 10.4.

    Google Scholar 

  349. J. Orlin, Contentment in graph theory: covering graphs with cliques. Proc. Konink. Nederl. Acad. Weten. (A) 80(1977), 406–424.

    MathSciNet  MATH  Google Scholar 

  350. M.W. Padberg, Perfect zero-one matrices. Math. Prog 6(1974), 180–196.

    MathSciNet  MATH  Google Scholar 

  351. M.W. Padberg, Almost integral polyhedra related to certain combinatorial optimization problems. Lin. Alg. Appl 15(1976), 69–88.

    MathSciNet  MATH  Google Scholar 

  352. M.W. Padberg, On the complexity of set packing polyhedra. Annals Disc. Math 1(1977), 421–434.

    MathSciNet  Google Scholar 

  353. M. Paoli, W.T. Trotter, and J.W. Walker, Graphs and orders in Ramsey theory and in dimension theory. In this volume.

    Google Scholar 

  354. C.H. Papadimitriou and M. Sipser, Communication complexity. Proc. 14th ACM Symp. Th. Comp (1982), 330–337.

    Google Scholar 

  355. C. Payan, A class of threshold and domishold graphs: equistable and equidominating graphs. Disc. Math 29(1980), 47–52.

    MathSciNet  MATH  Google Scholar 

  356. C. Payan, Perfectness and Dilworth number. Disc. Math 44(1983), 229–230.

    MathSciNet  MATH  Google Scholar 

  357. U.N. Peled, Matroidal graphs. Disc. Math 20(1977), 263–286.

    MathSciNet  Google Scholar 

  358. U.N. Peled, Threshold graph enumeration and series-product identities. Proc. 11th SE Conf. Comb. Graph Th. Comp. Congressus Num. 29(1980), 735–738

    MathSciNet  Google Scholar 

  359. U.N. Peled and B. Simeone, Box-threshold graphs. J. Graph Th 8(1984), 331–345.

    MathSciNet  MATH  Google Scholar 

  360. M.A. Perles, A proof of Dilworth’s decomposition theorem for partially ordered sets. Israel J. of Math 1(1963), 105–107.

    MathSciNet  MATH  Google Scholar 

  361. M.A. Perles, On Dilworth’s theorem in the infinite case. Israel J. Math 1(1963), 108–109.

    MathSciNet  MATH  Google Scholar 

  362. A. Pnueli, S. Even, and A. Lempel, Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math 23(1971)160–175.

    MathSciNet  MATH  Google Scholar 

  363. S. Poljak, A note on stable sets and colorings of graphs. Comm. Math. Univ. Carolinae 15(1974), 307–309.

    MathSciNet  MATH  Google Scholar 

  364. S. Poljak and A. Pultr, On the dimension of trees. Disc. Math 34(1981), 165–171.

    MathSciNet  MATH  Google Scholar 

  365. S. Poljak and A. Pultr, Representing graphs by means of strong and weak products. Comment. Math. Univ. Carol 22(1981), 449–465.

    MathSciNet  MATH  Google Scholar 

  366. S. Poljak, A. Pultr, and V. Rodl, On the dimension of the Kneser graphs, inAlgebraic Methods in Graph Theory (L. Lovasz and V.T. Sos, eds.), Coll. Math. Soc. J. Bolyai 25(1981), 631–646.

    Google Scholar 

  367. S. Poljak, A. Pultr, and V. Rodl, On a product dimension of bipartite graphs. J. Graph Th 7(1983), 475–486.

    MathSciNet  MATH  Google Scholar 

  368. S. Poljak and V. Rodl, Orthogonal partitions and covering of graphs, Czech. Math. J 30(1980), 475–485.

    MathSciNet  Google Scholar 

  369. S. Poljak, V. Rodl, and D. Turzik, Complexity of representation of graphs by set systems. Disc. Appl. Math 3(1981), 301–312.

    MathSciNet  MATH  Google Scholar 

  370. S. Poljak and D. Turzik, A note on dimension of P n3 . Czech. Math. J 31(1981)

    Google Scholar 

  371. M. Preissman, A class of strongly perfect graphs. Ecole Polytech. Fed., Lausanne, ORWP 83/3 (1983).

    Google Scholar 

  372. O. Pretzel, On the dimension of partially ordered sets. J. Comb. Th. (A) 25(1977), 50–61.

    Google Scholar 

  373. O. Pretzel, Another proof of Dilworth’s decomposition theorem. Disc. Math 25(1979), 91–92.

    MathSciNet  MATH  Google Scholar 

  374. O. Pretzel, A construction for posets. Disc. Math 32(1980), 59–68.

    MathSciNet  MATH  Google Scholar 

  375. R.A. Proctor, M.E. Saks, and D.G. Sturtevant, Product partial orders with the Sperner property. Disc. Math 30(1980), 173–180.

    MathSciNet  MATH  Google Scholar 

  376. N.J. Pullman, Clique coverings of graphs—a survey. Proc. Xth Austral. Conf. Comb. Math., Adelaide 1982, Springer-Verlag Lect. Notes Math. 1036 (1983), 72–85.

    Google Scholar 

  377. N.J. Pullman, Clique coverings of graphs IV: Algorithms. SIAM J. Comp (to appear).

    Google Scholar 

  378. N.J. Pullman and D. de Caen, Clique coverings of graphs III: Clique coverings of regular graphs. Congr. Numer 29(1980), 795–808.

    MathSciNet  Google Scholar 

  379. N.J. Pullman and D. de Caen, Clique coverings of graphs I: Clique partitions of regular graphs. Utilitas Math 19(1981), 177–205.

    MathSciNet  MATH  Google Scholar 

  380. N.J. Pullman and A. Donald, Clique coverings of graphs II: Complements of cliques. Utilitas Math 19(1981), 207–213.

    MathSciNet  MATH  Google Scholar 

  381. A. Pultr, Tensor products in the category of graphs. Commun. Math. Univ. Carol 11(1970), 619–639.

    MathSciNet  MATH  Google Scholar 

  382. A. Pultr, On productive classes of graphs determined by prohibiting given subgraphs. inCombinatorics (A. Hajnal and V.T. Sos, eds.) Colloq. Math. Soc. Janos Bolyai 18 (North-Holland, 1978), 805–820.

    Google Scholar 

  383. A. Pultr and J. Vinarek, Productive classes and subdirect irreducibility, in particular for graphs. Disc. Math 20(1977), 159–176.

    MathSciNet  Google Scholar 

  384. I. Rabinovitch, The dimension theory of semiorders and interval orders, Ph.D. thesis, Dartmouth College (1973).

    Google Scholar 

  385. I. Rabinovitch, The Scott-Suppes theorem on semi-orders. J. Math. Psych 15(1977), 209–212.

    MathSciNet  MATH  Google Scholar 

  386. I. Rabinovitch, The dimension of semi-orders. J. Comb. Th. (A) 25(1978), 50–61.

    MathSciNet  MATH  Google Scholar 

  387. I. Rabinovitch, Upper bound on dimension of interval orders. J. Comb. Th. (A) 25(1978), 68–71.

    MathSciNet  MATH  Google Scholar 

  388. I. Rabinovitch and I. Rival, Rank of a distributive lattice. Disc. Math 25(1979), 275–279.

    MathSciNet  MATH  Google Scholar 

  389. G. Ravindra, Meyniel graphs are strongly perfect. J. Comb. Th. (B) 33(1982), 187–190.

    MathSciNet  MATH  Google Scholar 

  390. A. Ray-Chaudhuri, unpublished.

    Google Scholar 

  391. R.C. Read, D. Rotem, and J. Urrutia, Orientations of circle graphs. J. Graph Th 6(1982), 325–241.

    MathSciNet  MATH  Google Scholar 

  392. P.L. Renz, Intersection representations of graphs by arcs, Pac. J. Math 34(1970), 501–510.

    MathSciNet  MATH  Google Scholar 

  393. B. Resnick, P. Tiwari, and D.B. West, Decomposition of product graphs into complete bipartite subgraphs, (preprint).

    Google Scholar 

  394. W. Riess, Zwei Optimierungsprobleme auf Ordnungen. Arbeitsbereichte des institute fur mathematische Maschinen und Datenwerarbeitung (Informatik) II 5(1978), 50–57.

    Google Scholar 

  395. J. Riguet, Les relations de Ferrers. C.F. Acad. Sci. Paris 232(1951), 1729.

    MathSciNet  MATH  Google Scholar 

  396. I. Rival, The diagram. In this volume.

    Google Scholar 

  397. I. Rival and N. Zaguia, Antichains and cutsets, to appear.

    Google Scholar 

  398. F.S. Roberts, Indifference graphs, inProof Techniques in GT (F. Harary, ed.). Academic Press (1969), 139–146.

    Google Scholar 

  399. F.S. Roberts, On the boxicity and cubicity of a graph. Recent Progress in Combinatorics (W.T. Tutte, ed.) (Acadamic Press, 1969).

    Google Scholar 

  400. F.S. Roberts, Graph Theory and its Applications to the Problems of Society, CBMS-NSF Conf. (Soc. Ind. Appl. Math, 1978)

    Google Scholar 

  401. F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, inTheory and Application of Graphs, Kalamazoo 1976 (Y. Alavi and D. Lick, eds.) Springer-Verlag Lect. Notes Math. 642 (1978), 477–490.

    Google Scholar 

  402. F.S. Roberts, Measurement theory. Encyc. Math. Appl 7(1979) (Addison-Wesley)

    Google Scholar 

  403. F.S. Roberts, Indifference and seriation. inAdvances in Graph Theory (F. Harary, ed.), New York Acad. Sci. 328(1979), 171–180.

    Google Scholar 

  404. F.S. Roberts, Applications of edges coverings by cliques. Disc. Appl. Math (to appear).

    Google Scholar 

  405. F.S. Roberts, Issues in the theory of uniqueness in measurement, inGraphs and Order. (I. Rival, ed.) D. Reidel (1985).

    Google Scholar 

  406. F.S. Roberts and J.E. Steif, A characterization of competition graphs of arbitrary digraphs. Disc. Appl. Math 6(1983), 323–326.

    MathSciNet  MATH  Google Scholar 

  407. D. Rotem and J. Urrutia, Circular permutation graphs. Networks 12(1982), 429–437.

    MathSciNet  MATH  Google Scholar 

  408. M. Roubens and P. Vincke, Linear orders and semiorders close to an interval order. Disc. Appl. Math 6(1983), 311–314.

    MathSciNet  MATH  Google Scholar 

  409. B. Roy, Nombre chromatique et plus longs chemins. Rev. Fr. Automat. Inform 1(1967), 127–132.

    Google Scholar 

  410. G. Sabidussi, Subdirect representations of graphs, in Infinite and Finite Graphs, Colloq. Math. Soc. Janos Bolyai 10(1973), 1199–1226.

    Google Scholar 

  411. M. Saks, A short proof of the existence ofk-saturated partitions of partially ordered sets. Advances in Math 33(1979), 207–211.

    MathSciNet  MATH  Google Scholar 

  412. M. Saks, Duality properties of finite set systems. Ph.D. Thesis, M.I.T. (1980). See also “Some integer sequences associated with combinatorial structures,” to appear.

    Google Scholar 

  413. M. Saks, Dilworth numbers, incidence maps, and product partial orders. SIAM J. Alg. Disc. Meth 1(1980), 211–216.

    MathSciNet  MATH  Google Scholar 

  414. A. Sali, Stronger form of an M-part Sperner theorem. Europ. J. Comb 4(1983), 179–183.

    MathSciNet  MATH  Google Scholar 

  415. N. Sauer and R.E. Woodrow, Finite cutsets and finite antichains. Order 1, 35.

    Google Scholar 

  416. E.R. Scheinerman, Intersection graphs and multiple intersection parameters of graphs, Ph.D Thesis, Princeton Univ. (1984).

    Google Scholar 

  417. E.R. Scheinerman, Characterizing intersection classes. Disc. Math (to appear).

    Google Scholar 

  418. E.R. Scheinerman, Irrepresentability by multiple intersection, or why the interval number is unbounded. (to appear).

    Google Scholar 

  419. E.R. Scheinerman and D.B. West, The interval number of a planar graph: Three intervals suffice. J. Comb. Th. (B) 35(1983), 224–239.

    MathSciNet  MATH  Google Scholar 

  420. J. Schonheim, A generalization of results of P. Erdos, G. Katona and D.J. Kleitman concerning Sperner’s theorem. J. Comb. Theory 11(1971), 111–117.

    MathSciNet  Google Scholar 

  421. A. Schrijver, A counterexample to a conjecture of Edmonds and Giles. Disc. Math 32(1980), 213–214.

    MathSciNet  MATH  Google Scholar 

  422. A. Schrijver, On total dual integrality. Linear Alg. Appl 38(1981), 27–32.

    MathSciNet  MATH  Google Scholar 

  423. A. Schrijver, Short proofs on the matching polyhedron. J. Comb. Th. (B) 34(1983), 104–108.

    MathSciNet  MATH  Google Scholar 

  424. D. Scott, Measurement models and linear inequalities. J. Math. Psych 1(1964), 233–247.

    MATH  Google Scholar 

  425. D. Scott and P. Suppes, Foundational aspects of theories of measurement. J. Symbolic Logic 23(1958), 113–128.

    MathSciNet  Google Scholar 

  426. J.B. Shearer, A note on circular dimension. Disc. Math 30(1980), 103.

    Google Scholar 

  427. L.N. Shevrin and N.D. Filippov, Partially ordered sets and their comparability graphs, Siber. Math. J 11(1970), 497–507 (648–667 in Russian).

    MATH  Google Scholar 

  428. L.N. Shevrin and N.D. Filippov, Partially ordered sets and their comparability graphs, Siber. Math. J 11(1970), 497–507 (648–667 in Russian).

    MATH  Google Scholar 

  429. D. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular-arc graphs, and nested interval graphs. J. Graph Th 6(1982).

    Google Scholar 

  430. D. Skrien, Chronological orderings of interval graphs. Disc. Appl. Math. 7(1984).

    Google Scholar 

  431. P.J. Slater, A note on pseudointersection graph. J. Res. Nat. Bur. Stan 80B(1976), 441–445.

    MathSciNet  Google Scholar 

  432. J. Spencer, Minimal scrambling sets of simple orders, Acta. Math. Acad. Sci. Hungar 22(1971), 349–353.

    MathSciNet  Google Scholar 

  433. E. Sperner, Ein Satz uber Untermengen einer endlichen Menge. Math. Z 27(1928), 544–548.

    MathSciNet  MATH  Google Scholar 

  434. E. Spilrajn, Sur l’extension de l’ordre partiel. Fund. Math 16(1930), 386–389.

    Google Scholar 

  435. J. Spinrad, Two-dimensional partial orders, Ph.D. Thesis, Princeton Univ. (1982). See also “Transitive orientation in0(n 2) time,”Proc. 15th ACM Symp. Th. Comp (1983), 457–466.

    Google Scholar 

  436. J. Stahl, On the 2-dimension of the crown S nk . (preprint).

    Google Scholar 

  437. J. Stahl and R. Wille, Preconcepts of contexts, in Proc. Universal Algebra (Sienna, 1984). (to appear).

    Google Scholar 

  438. R. Stanley, unpublished?

    Google Scholar 

  439. J.E. Steif, Frame dimension, generalized competition graphs, and forbidden sublist characterizations. Henry Rutger Thesis, Rutgers Univ. (1982).

    Google Scholar 

  440. L. Suranyi, the covering of graphs by cliques, Stud. Sci. Math. Hung 3(1968), 345–349.

    MathSciNet  MATH  Google Scholar 

  441. M.M. Syslo, On characterizations of cycle graphs, inProblemes Combinatoires et Theorie des Graphes, Colloq. CNRS Orsay 1976, Paris (1978), 395–398.

    Google Scholar 

  442. M.M. Syslo, On characterizations of kcycle graphs and on other families of intersection graphs. Report N40, Inst, of Comp. Sci., Univ. of Wroclaw (1978).

    Google Scholar 

  443. M.M. Syslo, Triangulated tree-edge-interval graphs, (preprint).

    Google Scholar 

  444. M.M. Syslo, A graph-theoretic approach to the jump number problem. In this volume.

    Google Scholar 

  445. V.S. Tanaev, Optimal decomposition of a partially ordered set into chains. Doklady Akad. Nauk. BSSR 23(1979), 389–391. MR 80m:06003.

    MathSciNet  MATH  Google Scholar 

  446. R.E. Tarjan, Decomposition by clique separators. Disc. Math (to appear).

    Google Scholar 

  447. D. Taylor, R.D. Dutton, and R.C. Brigham, Bounds on Nordhaus-Gaddum type bounds for clique cover numbers. Congressus Numer 40(1983), 199–234.

    MathSciNet  Google Scholar 

  448. H.H. Teh, Dimensions and auto-extensions of graphs. Nanta Math 3(1969), 23–32.

    MathSciNet  MATH  Google Scholar 

  449. J. Tind, On antiblocking sets and polyhedra. Annals Disc. Math 1(1977), 507–515.

    Google Scholar 

  450. J. Tind, Blocking and antiblocking polyhedra. AnnalsDisc. Math 4(1979), 159–174.

    MathSciNet  MATH  Google Scholar 

  451. B. Toft, On the maximal number of edges of criticalk-chromatic graphs. Stud. Sci. Math. Hungar 5(1970), 461–470.

    MathSciNet  Google Scholar 

  452. B. Toft, On critical subgraphs of color-critical graphs. Disc. Math 7(1974), 377–392.

    MathSciNet  MATH  Google Scholar 

  453. C. Totter, unpublished (Darmstadt).

    Google Scholar 

  454. C.A. Tovey and D.B. West, A network approach to duality theorems in products of partial orders. Order (to appear).

    Google Scholar 

  455. L.E. Trotter and D.B West, Two easy duality theorems on products of partial orders. (preprint).

    Google Scholar 

  456. W.T. Trotter, Dimension of the crown S kn . Disc. Math8 (1974), 85–103.

    MathSciNet  MATH  Google Scholar 

  457. W.T. Trotter, Irreducible posets with large height exist. J. Comb. Th. (A) 17(1974), 337–344.

    MathSciNet  MATH  Google Scholar 

  458. W.T. Trotter, Inequalities in dimension theory for posets. Proc. Amer. Math. Soc 47(1975), 311–316.

    MathSciNet  MATH  Google Scholar 

  459. W.T. Trotter, A note on Dilworth’s embedding theorem. Proc. Amer. Math. Soc 52(1975), 33–39.

    MathSciNet  MATH  Google Scholar 

  460. W.T. Trotter, Embedding finite posets in cubes. Disc. Math 12(1975), 165–172.

    MathSciNet  MATH  Google Scholar 

  461. W.T. Trotter, A generalization of Hiraguchi’s inequality for posets. J. Comb. Th. (A) 20(1976), 114–123.

    MathSciNet  MATH  Google Scholar 

  462. [T18] W.T. Trotter, A forbidden subposet characterization of an order-dimension inequality. Math. Syst. Th. 10 (1976), 91–96.

    Google Scholar 

  463. W.T. Trotter, Combinatorial problems in dimension theory for partially ordered sets. Proc. Comb. and Graph Theory, Univ. of Paris, Orsay (1976).

    Google Scholar 

  464. W.T. Trotter, The dimension of planar posets. J. Comb. Th. (B) (1977), 54–67.

    Google Scholar 

  465. W.T. Trotter, A characterization of Roberts’ inequality for boxicity. Disc. Math 28(1979), 303–313.

    MathSciNet  MATH  Google Scholar 

  466. W.T. Trotter, Stacks and splits of partially ordered sets. Disc. Math 35(1981), 229–256.

    MathSciNet  MATH  Google Scholar 

  467. W.T. Trotter, Jr., Graphs and partially ordered sets, inSelected Topics in Graph Theory, Vol. II (L. Beineke and R. Wilson, eds.). Academic Press, New York (1983), 237–268.

    Google Scholar 

  468. W.T. Trotter, The dimension of the cartesian product of posets. in Ordres: Description et Roles (M. Pouzet, ed.)Annals Disc. Math (1984).

    Google Scholar 

  469. W.T. Trotter, A note on the greedy dimension of ordered sets. Order (to appear).

    Google Scholar 

  470. W.T. Trotter, personal communication.

    Google Scholar 

  471. W.T. Trotter and K.P. Bogart, Maximal dimensional partially ordered sets III: A characterization of Hiraguchi’s inequality for interval dimension. Disc. Math 15(1976), 389–400.

    MathSciNet  MATH  Google Scholar 

  472. W.T. Trotter and K.P. Bogart, On the complexity of posets. Disc. Math 16(1976), 71–82.

    MathSciNet  MATH  Google Scholar 

  473. W.T. Trotter and F. Harary, On double and multiple interval graphs. J. Graph Th 2(1978), 137–142.

    MATH  Google Scholar 

  474. W.T. Trotter and T.R. Monroe, A combinatorial problem involving graphs and matrices. Disc. Math 39(1982), 87–101.

    MathSciNet  MATH  Google Scholar 

  475. W.T. Trotter and J.I. Moore, Characterization problems for graphs, partially ordered set, lattices, and families of sets. Disc. Math 16(1976), 361–381.

    MathSciNet  Google Scholar 

  476. W.T. Trotter and J.I. Moore, Some theorems on graphs and posets. Disc. Math 15(1976), 79–84.

    MathSciNet  MATH  Google Scholar 

  477. W.T. Trotter and J.I. Moore, The dimension of planar posets. J. Comb. Th. (B) 22(1977), 54–67.

    MathSciNet  MATH  Google Scholar 

  478. W.T. Trotter, J.I. Moore, and D.P. Sumner, Dimension of a comparability graph. Proc. Amer. Math. Soc 60(1976), 35–38.

    MathSciNet  Google Scholar 

  479. W.T. Trotter and J.A. Ross, Every t-irreducible partial order is a suborder of a t+1-irreducible partial order. Annals Disc. Math. 17(1983), 613–621.

    MathSciNet  Google Scholar 

  480. W.T. Trotter and J.A. Ross, For t≥ 3, every t -dimensional partial order is a suborder of a t + 1-irreducible partial order. Proc. Conf. Combinatorics and Graph Theory, Eger, Hungary, 1981 (to appear).

    Google Scholar 

  481. A.C. Tucker, Characterizing circular arc graphs. Bull. Am. Math. Soc 76(1970), 1257–1260.

    MATH  Google Scholar 

  482. A.C. Tucker, Matrix characterizations of circular arc graphs. Pac. J. Math 39(1971), 535–545.

    MATH  Google Scholar 

  483. A.C. Tucker, Structure theorems for some circular-arc graphs. Disc. Math 7(1974), 167–195.

    MATH  Google Scholar 

  484. A.C. Tucker, Coloring a family of circular arcs. SIAM J. Appl. Math 29(1975), 493–502.

    MathSciNet  MATH  Google Scholar 

  485. A.C. Tucker, Circular arc graphs: new uses and a new algorithm. Theory and Application of Graphs, 581–589.

    Google Scholar 

  486. A.C. Tucker, An efficient test for circular-arc graphs. SIAM J. Computing 9(1980), 1–24.

    MATH  Google Scholar 

  487. P. Turan, An extremal problem in graph theory. Mat. Fiz. Lapok 48(1941), 436–452.

    MathSciNet  MATH  Google Scholar 

  488. H. Tverberg, On Dilworth’s decomposition theorem for partially ordered sets. J. Comb. Th 3(1967), 305–306.

    MathSciNet  MATH  Google Scholar 

  489. P. Tiwari, Lower bounds on communication complexity in distributed computer networks. Proc. 25th Symp. Found. Comp. Sci (1984).

    Google Scholar 

  490. K. Vesztergombi, Some remarks on the chromatic number of the strong product of graphs. Acta Cybernetica 4(1978), 207–212.

    MathSciNet  Google Scholar 

  491. K. Vesztergombi, Chromatic number of strong product of graphs, inAlgebraic Methods in Graph Theory (L. Lovasz and V.T. Sos, eds.), North-Holland, New York (1981), 819–826.

    Google Scholar 

  492. G. Viennot, Chain and antichain families, grids, and Young tableaux, in Ordres: Description et Roles (Proc. Lyon 1982) (M. Pouzet, ed.)Annals of Discrete Math (1984), 409–463.

    Google Scholar 

  493. J.R. Walter, Representation of Rigid Cycle Graphs. Ph.D. Thesis, Wayne State Univ. (1972).

    Google Scholar 

  494. D.L. Wang, A note on uniquely intersectable graphs. Studies in Appl. Math 55(1976), 361–363.

    MathSciNet  MATH  Google Scholar 

  495. G. Wegner, Eigenscharten der Nervan Homologische-einfacher Familien im Rn. Ph.D. thesis, Gottingen (1967).

    Google Scholar 

  496. D.B. West, A symmetric chain decomposition ofL(4, n). Eur. J. Comb 1(1980), 379–383.

    MATH  Google Scholar 

  497. D.B. West, Extremal problems in partially ordered sets, inOrdered Sets (I. Rival, ed.) D. Reidel, Dordrecht (1982), 473–521.

    Google Scholar 

  498. D.B. West, “Poly-unsaturated partitions”: The Greene-Kleitman Theorem is best possible. J. Comb. Th. (A) (submitted).

    Google Scholar 

  499. D.B. West, L.H. Harper, and D.A. Daykin, Some remarks on normalized matching. J. Comb. Th. (A) 35(1983), 301–308.

    MathSciNet  MATH  Google Scholar 

  500. D.B. West and D.J. Kleitman, Skew chain orders and sets of rectangles. Disc. Math 27(1979), 99–102.

    MathSciNet  MATH  Google Scholar 

  501. D.B. West and D.B. Shmoys, Recognizing graphs with fixed interval number is NP-complete. Disc. Appl. Math 8(1984), 295–305.

    MathSciNet  MATH  Google Scholar 

  502. D.B. West and C.A. Tovey, Semiantichains and unichain coverings in the direct products of partial orders. SIAM J. Alg. Disc. Meth 2(1981), 295–305.

    MathSciNet  MATH  Google Scholar 

  503. D. B. West, W. T. Trotter, Jr., G. W. Peck, and P. Shor, Regressions and monotone chains: a Ramsey-type extremal problem for partial orders. Combinatorica 4(1984), 117–119.

    MathSciNet  MATH  Google Scholar 

  504. A.T. White and L.W. Beineke, Topological graph theory, inSelected Topics in Graph Theory (L.W. Beineke and R.W. Wilson, eds.) Academic Press (1978), 15–49.

    Google Scholar 

  505. R. Wille, Lexicographic decomposition of ordered sets (graphs), Fachbereich Mathematik, Tech. Hochschule Darmstadt, Report No. 705.

    Google Scholar 

  506. H.S. Witsenhausen, On intersections of interval graphs. Disc. Math 31(1980), 211–216.

    MathSciNet  MATH  Google Scholar 

  507. D.R. Woodall, Menger and Konig systems, inTheory and Applications of Graphs, Kalamazoo 1976 (Y. Alavi and D.R. Lick, eds.) Springer-Verlag Lect. Notes 642 (1978), 620–635.

    Google Scholar 

  508. K. Yamamoto, Logarithmic order of free distributive lattices. J. Math. Soc. Japan 6(1954), 343–353.

    MathSciNet  MATH  Google Scholar 

  509. M. Yannakakis, The complexity of the partial order dimension problem. SIAM J. Alg. Disc. Meth 3(1982), 351–358.

    MathSciNet  MATH  Google Scholar 

  510. A.C. Yao, some complexity questions related to distributive computing. Proc. 11th ACM Symp. Th. Comp. (1979), 209–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

West, D.B. (1985). Parameters of Partial Orders and Graphs: Packing, Covering, and Representation. In: Rival, I. (eds) Graphs and Order. NATO ASI Series, vol 147. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5315-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5315-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8848-0

  • Online ISBN: 978-94-009-5315-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics