Skip to main content

The Information Theoretic Bound for Problems on Ordered Sets and Graphs

  • Chapter
Graphs and Order

Part of the book series: NATO ASI Series ((ASIC,volume 147))

Abstract

One of the most basic problems arising in computer science is to sort a set X with unknown total order. The objective is to minimize the number of steps needed in worst case, where a step consists of a comparison of two elements x and y (this comparison is denoted x:y). The result of each comparison reduces the set of possible orderings of X to one of two sets: those in which x < y and those in which y < x. Since it is possible that the larger of these two sets remains, the number of possible orders on X is reduced by no more than half. In worst case we need at least log n! = n log n + 0(n) comparisons to sort the n-element set X. (We write log for log2 throughout this paper.)

This is an example of an information theoretic bound (ITB) for a combinatorial decision problem, one of the few general techniques known for obtaining lower bounds on the computational complexity of a problem. For those problems where this argument is applicable, a natural question to ask is: “can this bound be achieved?” or “how close can we come to achieving the bound?” For the sorting problem above there are several well-known algorithms that essentially attain the ITB (see [Kn]), but of course this is not the case for all such problems.

This paper is a survey of a number of computational problems involving ordered sets and graphs in which the ITB can be applied. As will be seen, the derivation of these bounds and the question of how good they are often lead to combinatorial questions that are interesting in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Ahlswede and D.E. Daykin (1978) An inequality for the weights of two families, their unions and intersections, Z, Wahrscheinlichkeitstheorie verw. Gebeite 43, 183–185.

    Article  MathSciNet  MATH  Google Scholar 

  2. A.V. Aho, J.E. Hopcroft and J.D. Ullman (1974)The Design and Analysis of Algorithms, Addison Wesley, Reading, Mass.

    MATH  Google Scholar 

  3. M. Aigner (1979) Combinatorial Theory, Springer-Verlag.

    MATH  Google Scholar 

  4. M. Aigner (1981) Producing posets, Disc. Math. 35, 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  5. V.B. Alekseev (1976) O rassifrovke nekotorych Klassov monotonnych mnogoznacnych Funkcij, Z.Vycisl. Mat. i. Mat. Flz 16, 189–198.

    MATH  Google Scholar 

  6. C. Berge (1973)Graphs and Hypergraphs, North-Holland.

    MATH  Google Scholar 

  7. G. Birkhoff (1967)Lattice Theory, AMS.

    MATH  Google Scholar 

  8. M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan (1973) Time-bounds for selection, J. Computer Sys. Sci 7, 448–461.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bollobas (1978)Extremal Graph Theory, Academic Press, London, New York and San Francisco.

    MATH  Google Scholar 

  10. T. Bonneson and W. Fenchel (1971) Theorie der konvexen Korper, Springer, Berlin, 1934; Chelsea, New York, 1948 and 1971.

    Google Scholar 

  11. A. Borodin. L.J. Guibas, N.A. Lynch, and A.C. Yao (1981) Efficient searching using partial orders, Information Processing Letters 12, 71–75.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Busemann (1958)Convex Surfaces, Interscience, New York.

    MATH  Google Scholar 

  13. G.B. Dantzig (1960) On the shortest route through a network, Management Sci 6, 187–190.

    Article  MathSciNet  MATH  Google Scholar 

  14. E.W. Dijkstra (1959) A note on two problems in connection with graphs, Numer. Math. I, 269–271.

    Google Scholar 

  15. R.P. Dilworth (1950) A decomposition theorem for partially ordered sets, Ann. of Math (2) 51, 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Dobkin and R.J. Lipton (1974) On some generalizations of binary search, ACM Symposium on the Theory of Computing, Seattle, Wash., May.

    Google Scholar 

  17. D.P. Dobkin and R.J. Lipton (1979) On the complexity of computations under varying sets of primitives, J. Computer Sys. Sci 18, 86–91.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Engel, Recognition of order-preserving maps, preprint.

    Google Scholar 

  19. P. Erdos and B. Sands, A note on independent sets in bipartite graphs, preprint.

    Google Scholar 

  20. U. Faigle, L. Lovasz, R. Schrader, and G. Turan, Searching in trees, series-parallel and interval orders, preprint.

    Google Scholar 

  21. R.W. Floyd (June 1962) Algorithm 97: shortest path, Comm. ACM 5, 6, 345.

    Article  Google Scholar 

  22. C.M. Fortuin, P.W. Kasteleyn and J. Ginibre (1971) Correlation inequalities on some partially ordered sets, Comm. Math. Phys 22, 89–103.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Fredman (1975) On computing the length of the longest increasing subsequence, Disc. Math 11, 29–35.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Fredman (1976) How good is the Information Theory bound in sorting?, Theoretical Computer Sci 1, 355–361.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Fredman (1976) New bounds on the complexity of the shortest path problem, SIAM J. Computing 5, 83–89.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Fredman and R.E. Tarjan, Fibonacci Heaps and their uses, preprint.

    Google Scholar 

  27. R.L. Graham (1971) On sorting by comparisons, Computers in Number Theory, A.O.L. Atkin and B.I. Birch, eds. Academic Press, London, 263–269.

    Google Scholar 

  28. R.L. Graham, A.C. Yao and F.F. Yao (1980) Information bounds are weak in the shortest distance problem, JACM 27, 428–444.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Greene (1977) Acyclic orientations (Notes), inHigher Combinatorics, M. Aigner, ed., D. Reidel, Dordrecht, 65–68.

    Google Scholar 

  30. H.-D. O.F. Gronau (1979) Recognition of monotone functions, Acta Cybernetica 4, 279–281.

    MathSciNet  MATH  Google Scholar 

  31. B. Grunbaum (1967)Convex Polytopes, Interscience, New York.

    Google Scholar 

  32. A. Hadian and M. Sobel (1969) Selecting thet th largest using binary errorless comparisons, Coll. Math. Soc: Janos Bolyai.

    Google Scholar 

  33. G. Hansel (1966) Sur le nombre des fonctions booleenes monotones den variables, C.R. Acad. Sci. Paris 262, 1088–1090.

    MathSciNet  Google Scholar 

  34. E. Horowitz and S. Sahni (1982)Fundamentals of Data Structures, Computer Science Press.

    Google Scholar 

  35. F.K. Hwang (1980) Optimal merging of 3 elements withn elements, SIAM J. Computing, 298–320.

    Google Scholar 

  36. F.K. Hwang and S. Lin (1971) Optimal merging of 2 elements withn elements, Acta Informatica 1, 145–158.

    Article  MathSciNet  MATH  Google Scholar 

  37. F.K. Hwang and S. Lin (1972) A simple algorithm for merging two disjoint linearly ordered sets, SIAM J. Computing 1, 31–39.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Hyafil (1976) Bounds for selection, SIAM J. Comput 5, 109–114.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Kahn and M. Saks, Balancing poset extensions, Order 1, 113.

    Google Scholar 

  40. J. Kahn and M. Saks (1984) Every poset has a good comparison, ACM Symposium on the Theory of Computing, Washington, D.C.

    Google Scholar 

  41. L.R. Kerr (1970) The effect of algebraic structure on the computational complexity of matrix multiplication, Ph.D. Thesis, Cornell U., Ithaca, N.Y.

    Google Scholar 

  42. D.E. Knuth (1973)The Art of Computer Programming, vol. 3, Addison Wesley, Reading, MA.

    Google Scholar 

  43. V.K. Korobkov (1965) 0 monotonnych funkcijach algebry logiki, Problemy Kibernetiki 13, 5–28.

    MathSciNet  Google Scholar 

  44. V.K. Korobkov (1965) Nekotorye oboscenije zadaci “rassifrovki” monotonnych funkcij algebry logiki, Diskret. Ansliz 5, 19–25.

    MathSciNet  MATH  Google Scholar 

  45. E. Lawler (1976)Combinatorial Optimization, Networks and Matroids, Holt Rinehard and Winston.

    MATH  Google Scholar 

  46. N. Linial, The Information Theoretic Bound is good for merging, SIAM J. Computing, to appear.

    Google Scholar 

  47. N. Linial (Nov. 1983) Legal colorings of graphs, Proc. 24th Symposium on Foundations of Computer Science, IEEE, 470–472.

    Google Scholar 

  48. N. Linial and M. Saks, Searching ordered structures, Journal of Algorithms, to appear.

    Google Scholar 

  49. N. Linial and M. Saks (Nov. 1983) Information bounds are good for search problems on ordered data structures, Proc. 24th Symposium on Foundations of Computer Science, IEEE, 473–475.

    Google Scholar 

  50. N. Linial and M. Saks, Every poset has a central element, preprint.

    Google Scholar 

  51. U. Manber and M. Tompa (1981) The effect of number of Hamiltonian paths on the complexity of a vertex coloring problem, Proc. 22nd Annual Symposium on the Foundations of Computer Science

    Google Scholar 

  52. V. Pratt and F. Yao (1973) On lower bounds for computing the ith largest element, Proc. 14th Annual IEEE Symposium on Switching and Automata Theory, Iowa City, pp. 70–81.

    Google Scholar 

  53. M. Rabin (1972) Proving the simultaneous positivity of linear forms, J. Computer Sys. Sci 6, 639–650.

    Article  MathSciNet  MATH  Google Scholar 

  54. E. Reingold (1971) Computing the maximum and the median, 12th Annual Symposium on Switching and Automata Theory, pp. 216–218.

    Google Scholar 

  55. E.S. Rosenthal (1981) The complexity of searching in partially ordered sets, Abstract No. 788-68-47, Abstracts of AMS 2, p. 454.

    Google Scholar 

  56. B. Sands (1981) Counting antichains in finite partially ordered sets, Discrete Math 35, 213–228.

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Schonhage (1976) The production of partial orders, Asterisque 38–39, 229–246.

    MathSciNet  Google Scholar 

  58. A. Schonhage, M. Paterson, and N. Pippenger (1976) Finding the median, J. Computer Sys. Sci 13, 184–199.

    Article  MathSciNet  Google Scholar 

  59. J. Shearer, Personal communication.

    Google Scholar 

  60. M. Snir (1981) Proving lower bounds for linear decision trees, Proc. 8th International Coll. on Automata Languages and Programming, Lecture Notes in Computer Science 115, Springer-Verlag, 305–315.

    Google Scholar 

  61. P.M. Spira (1972) Complete linear proofs of systems of linear inequalities, J. Computer Sys. Sci 6, 205–216.

    Article  MathSciNet  MATH  Google Scholar 

  62. R.P. Stanley (1973) Acyclic orientations of graphs, Disc. Math 5, 171–178.

    Article  MathSciNet  MATH  Google Scholar 

  63. R.P. Stanley (1981) Two combinatorial applications of the Alexandrov-Fenchel inequalities, J. Comb. Th, series A,31, 56–65.

    Article  MathSciNet  MATH  Google Scholar 

  64. P.K. Stockmeyer and F.F. Yao (1980) On the optimality of linear merge, SIAM J. Computing 9, 85–89.

    Article  MathSciNet  MATH  Google Scholar 

  65. A.C. Yao (1975) On the complexity of comparison problems using linear functions, Proc. 16th IEEE Symposium on Switching and Automata Theory, pp. 85–99.

    Google Scholar 

  66. A.C. Yao, D.M. Avis and R.L. Rivest (1977) An Ω(n 2logn) lower bound to the shortest path problems, Proc. 9th ACM Symposium on Theory of Computing, pp. 11–17.

    Google Scholar 

  67. A.C. Yao and R.L. Rivest (1980) On the polyhedral decision problem, SIAM J. Computing 9, 343–347.

    Article  MathSciNet  MATH  Google Scholar 

  68. C.K. Yap (1976) New upper bounds for selection, Comm. ACM 19, 501–508.

    Article  MathSciNet  MATH  Google Scholar 

  69. T. Zaslavsky (1975) Facing up to arrangements: Face count formulas for partitions of space by hyperplanes, Memoir AMS. No. 154, AMS.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Saks, M. (1985). The Information Theoretic Bound for Problems on Ordered Sets and Graphs. In: Rival, I. (eds) Graphs and Order. NATO ASI Series, vol 147. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5315-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5315-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8848-0

  • Online ISBN: 978-94-009-5315-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics