Skip to main content

Ordered Ranked Posets, Representations of Integers and Inequalities from Extremal Poset Problems

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 147))

Abstract

LetL be the set of subsets of a finite set ordered by inclusion. Sperner found the maximum size of an antichain in L. Later Kruskal proved a theorem stronger than Sperner’s result. It has many applications and yields representations of integers in terms of cascades. There are cascade inequalities, many of which can be proved using Daykin’s algorithm, but the proofs of others are based on manipulation of binomial coefficients.

I will describe some applications of the above and also describe how both Leeb and Clement have proved a version of Kruskal’s theorem for different generalizations of L. In each generalization we wish to solve the problems already solved in L, and this leads to an axiomatic approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Anderson (1968) On the divisors of a number, J. London Math. Soc 43, 410–418.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bollobás (1973) Sperner systems consisting of pairs of complementary subsets, J. Combinatorial Theory, Series A, 15, 363–366.

    Article  MATH  Google Scholar 

  3. C.C. Chen and D.E. Daykin (1976) Representation of numbers by cascades, Proc. Amer. Math. Soc 59, 394–398.

    Article  MathSciNet  MATH  Google Scholar 

  4. G.F. Clements (1970) On existence of distinct representation sets for subsets of a finite set, Canad. J. Math 23, 1284–1292.

    Article  MathSciNet  Google Scholar 

  5. G.F. Clements (1971) More on the generalized Macaulay theorem, Discrete Math. 1, 247–255.

    Article  MathSciNet  MATH  Google Scholar 

  6. G.F. Clements (1973) A minimization problem concerning subsets, Discrete Math. 4, 123–128.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.F. Clements (1977) More on the generalised Macaulay theory II, Discrete Math. 18, 253–264.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.F. Clements (to appear) A generalisation of the Kruskal-Katona theorem, J. Combinatorial Theory, Series A.

    Google Scholar 

  9. G.F. Clements (to appear) On uniqueness of maximal antichians of subsets of a multiset, Period. Math. Hungar

    Google Scholar 

  10. G.F. Clements (to appear) Antichains in the set of subsets of a multiset, Discrete Math

    Google Scholar 

  11. G.F. Clements and H.-D.O.F. Gronau (1981) On maximal antichains containing no set and its complement, Discrete Math 33, 239–247.

    Article  MathSciNet  MATH  Google Scholar 

  12. G.F. Clements and B. Lindström (1969) A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7, 230–238.

    Article  MathSciNet  MATH  Google Scholar 

  13. D.E. Daykin (1969) Representation of natural numbers of sums of generalised Fibonacci numbers II, Fibonacci Quart. 7, 494–510.

    MathSciNet  MATH  Google Scholar 

  14. D.E. Daykin (1974) A simple proof of the Kruskal-Katona theorem, J. Combinatorial Theory, Series A, 17, 252–253.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.E. Daykin (1975) An algorithm for cascades giving Katona-type inequalities, Nanta Math. 8, 78–83.

    MathSciNet  MATH  Google Scholar 

  16. D.E. Daykin (1975) Antichains in the lattice of subsets of a finite set, Nanta Math 8, 84–94.

    MathSciNet  MATH  Google Scholar 

  17. D.E. Daykin (1983) Antichains of subsets of a finite set, Proc. Conf. Cambridge (B. Bollobás, Ed.), to appear.

    Google Scholar 

  18. D.E. Daykin and P. Frankl (1983) On Kruskal’s cascades and counting containments in a set of subsets, Mathematika 30, 133–141.

    Article  MathSciNet  MATH  Google Scholar 

  19. D.E. Daykin and P. Frankl (1983) Inequalities for subsets of a set and KLYM posets, SIAM J. on Algebraic and Discrete Methods 4, 67–69.

    Article  MathSciNet  MATH  Google Scholar 

  20. D.E. Daykin and P. Frankl (1983) Extremal sets of subsets satisfying conditions induced by a graph, Proc. Conf. Cambridge (B. Bollobás, Ed.), to appear.

    Google Scholar 

  21. D.E. Daykin, J. Godfrey and A.J.W. Hilton (1974) Existence theorems for Sperner families, J. Combinatorial Theory, Series A, 17, 245–251.

    Article  MathSciNet  MATH  Google Scholar 

  22. D.E. Daykin, L.H. Harper and D.B. West (1983) Some remarks on normalised matching, J. Combinatorial Theory, Series A, 35, 301–308.

    Article  MathSciNet  MATH  Google Scholar 

  23. D.E. Daykin and D. Kelly (to appear) On LYM posets and LYM bipartite graphs.

    Google Scholar 

  24. N.G. DeBruijn, D. Kruyswijk and CE Van Tengbergen (1949–1951) On the set of divisors of a number, Nieuw Arch. Wisk 23, 191–193.

    Google Scholar 

  25. R.L. Graham and L.H. Harper (1969) Some results on matching in bipartite graphs, SIAM J. Appl. Math 17, 1017–1022.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Greene and D.J. Kleitman (1978) Proof techniques in the theory of finite sets, Studies in combinatorics (G.-C. Rota, Ed.), MAA Studies in Math, Vol. 17 (Washington, D.C.) 22–79.

    Google Scholar 

  27. L.H. Harper (1964) Optimal assignments of numbers to vertices, J. Soc. Indust. Appl. Math 12, 131–135.

    Article  MathSciNet  MATH  Google Scholar 

  28. L.H. Harper (1966) Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory 1, 385–393.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Katona (1966) A theorem for finite sets, Theory of Graphs (P. Erdös and G. Katona, Eds.) Hungarian Acad, of Science, Budapest, 187–207.

    Google Scholar 

  30. D.J. Kleitman (1974) On an extremal property of antichains, Combinatorics, Proc. Conf. Breukelen (M. Hall and J.H. van Lint, Eds.) Tract 55, Math. Centrum, Amsterdam, 77–90.

    Google Scholar 

  31. J.B. Kruskal (1963) The number of simplices in a complex, Mathematical Optimization Techniques (R. Bellman, Ed.), University of California Press, Berkley, 251–278.

    Google Scholar 

  32. E. Sperner (1928) Ein Satz über Untermengen einer endlichen Menge, Math. Z 27, 544–548.

    Article  MathSciNet  Google Scholar 

  33. D.B. West (1982) Extremal problems in partially ordered sets, Ordered Sets, Proc. Conf. Banff (I. Rival, Ed.) D. Reidel, Dordrecht, 473–521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Daykin, D.E. (1985). Ordered Ranked Posets, Representations of Integers and Inequalities from Extremal Poset Problems. In: Rival, I. (eds) Graphs and Order. NATO ASI Series, vol 147. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5315-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5315-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8848-0

  • Online ISBN: 978-94-009-5315-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics