Skip to main content

Long Term Energy Storage

  • Chapter
Book cover Solar Thermal Energy Storage

Abstract

The seperation of the collecting and storage units in the conventional solar system permits the efficient design for each unit. Although the efficiency of such systems is quite high so is the unit cost. These systems cannot be scaled up for longterm large energy storage. The large collecting areas and large storage units will be prohibitively expensive. The long term energy storage calls for a different approach. For solar energy to be competitive, the system must be designed where large collecting areas or large storage capacity or both should be cheaply available. In this chapter some such concepts are discussed. In solar pond, both large collecting areas and storage are inexpensive. In other concepts the insulating properties of earth are used to provide large storage space. In this chapter some longterm storage concepts and problems are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.L. Sargent (1979), ‘An overview of solar pond technology’ Proceedings of the Solar Industrial Process Heat Conference, October 31–Nov. 2, 1979, 355–37T.

    Google Scholar 

  2. A.B. Cassamajor and R.F. Parsons (1978), ‘Design guide for Shallow Solar Ponds’, Lawrence Livermore Laboratory, University of California, Report No. UCRL-52385.

    Google Scholar 

  3. H. Weinberger (1964), ‘The physics of the solar pond’, Solar Energy, 8, 45–56.

    Article  Google Scholar 

  4. H. Tabor and R. Matz (11965), ‘Solar pond status report’, Solar Energy, 9, 177.

    Google Scholar 

  5. H. Tabor and H. Weinberger (1981), ‘Nion–convecting solar ponds’, Chapter 10, Solar Energy Handbook (Edited by J.F. Kreider and F. Krieth), McGraw–Hill Book Co., New York.

    Google Scholar 

  6. C.E. Nielsen (1980), ‘Non–convective salt gradient solar pond’, Chapter 11, Solar Energy Handbook (Edited by W.C. Dickinson and P.N. Chermishoff ), Marcel Dekker, New York. See also ‘Non–convective salt gradient solar ponds’ Ohio State University Report, July 1980.

    Google Scholar 

  7. H. Tabor (1981), ‘Solar Ponds’, Solar Energy, 27, 181–194.

    Article  Google Scholar 

  8. D.L. Styris, R. Zaworski and O.K. Harling, (1975), ‘The non–convecting solar pond an overview of technological status and possible pond applications’ Pacific Northwest Laboratories report No.BNWL-1891/ WC –13.

    Google Scholar 

  9. Kaleesinky (1902), ‘Ungarische Warme und Heisse Kochsolzeen’, Ann. D. Physik (4), 7, 408.

    Google Scholar 

  10. C.G. Anderson (1958), ‘Limnology of a shallow saline meromitic lake’, Limnology and Oceanog., 3, 259–269.

    Article  Google Scholar 

  11. A.T. Wilson and H.W. Wellmann, (1962), ‘Lake Vanda, an Antaretic Lake’, Nature, 196, 1171–1173.

    Article  Google Scholar 

  12. P.P. Hudec and P. Sonnefeld (1974), ‘Hot brines on Los Rogues’, Venezuela Science, 185, 440.

    Google Scholar 

  13. Y. Cohen, W. Krimbein and M. Shilo (1 977), ‘Solar Lake (Sinai)’, Limnology and Oceanog., 22, 609–634.

    Google Scholar 

  14. Rabl and C.E. Mielson (1975), ‘Solar ponds for space heating’, Solar Energy, 17 (1), 1–12.

    Google Scholar 

  15. N.D. Kaushika, P.K. Bansal and M.S. Sodha, (1980), ‘Partitioned solar pond collector/storage system’, Applied Energy, 7, 169.

    Google Scholar 

  16. L.H. Shaffer (1978), ‘Viscosity stabilised solar ponds’, Sun Mankinds future source of energy, Proc. Int. Solar Energy Society Congress, New Delhi, 1978, 1171.

    Google Scholar 

  17. K.G.T. Hollands(1965) Honeycombs devices in flat plate collectors Solar Energy, 9, 159–164.

    Google Scholar 

  18. C.E. Nielson and A. Rabl (1976), ‘Salt requirements and stability of solar ponds’,. Department of Physics, Ohio State University, Columbus OMI 43210, 1976.

    Google Scholar 

  19. M.N.A. Hawlader (1979), ‘The solar pondcollector and storage of solar energy’, Sun at work in Britain, No. 10, P. 12.

    Google Scholar 

  20. A.A. Morel (1974), ‘Optical aspects of Oceanography’, Edited by N.G. Jerlov and E.S. Nielson. Chapter 1, Academic Press, New York.

    Google Scholar 

  21. J. R. Hull (1982), ‘Calculation of solar pond thermal efficiency with diffusively reflecting bottomi’, Solar Energy, 29.

    Google Scholar 

  22. C.F. Kooi (1981), ‘Salt gradient solar pond with reflective bottom–Application to the Saturated Pond’, Solar Energy, 26, 113.

    Google Scholar 

  23. M.N.A. Hawladar (1980), ‘The influence of the extinction coefficient on the effectiveness of solar pond’, Solar Energy, 25, 461.

    Google Scholar 

  24. T.R.A. Davey (1968), ‘The Aspendale solar pond’ Rep. R. 15 CSIR0, Australia.

    Google Scholar 

  25. L.J. Wittenberg and M.J. Harris (1981), ‘Construetion and Start up performance of the malamisburg Salt Gradient solar pond’, Solar Energy Engineering, 103, 11.

    Google Scholar 

  26. R.P. Fynn, T.H. Short, P.C. Badger and M.J. Sciarini, (1980), ‘Monitoring sodium chloride concentration and density profiles in solar ponds; by dielectrical conductivity and temperature measurement’, Proc. 1980, American Society of ISES June 1–8, 1980, Phonix, Arizona.

    Google Scholar 

  27. C. Elata and O. Levin (11965), 11th cong of the Int. Assoc. for Hydraulic Research Leningrad.

    Google Scholar 

  28. C. Elata and O. Levin (11965), 11th cong of the Int. Assoc. for Hydraulic Research Leningrad.

    Google Scholar 

  29. K.D. Stolzenback, J.M.K. Dake and D.R.F. Harleman (1968), ‘Prediction of temperatures in solar ponds’, Annu meeting, Solar Energy Soc., Palo Alto, California, Oct. 21–23.

    Google Scholar 

  30. C.F. Kooi (1979), ‘The steady state salt gradient solar pond’, Solar Energy, 23, 37–45.

    Google Scholar 

  31. V.N. Eliseev, Yu. (J. Usmanov and L.N. Testenko (1971), ‘Theoretical investigation of the thermal regimis of a solar pond’, Geliotekhnika, 7, 17.

    Google Scholar 

  32. J.R. Hull (11980), ‘Computer simulation of solar pond thermal behaviour’, Solar Energy, 25, 33.

    Google Scholar 

  33. M.N.A. Hawlader and B.J. Brinkworth (1981), ‘An analysis of the non–convecting solar pond’, Solar Energy, 27, 195–204.

    Google Scholar 

  34. M.S. Sodha, N.D. Kaushik and S.K. Rao (1981), ‘Thermal analysis of three zone solar pond’, Energy Research, 5, 321.

    Google Scholar 

  35. P.K. Bansal and N.D. Kaushik (1981), ‘Salt gradient stabilized solar pond collector’, Energy Conversion and Management, 21 (11), 81–95.

    Article  Google Scholar 

  36. H.C. Bryant and I. Colleck (1977), ‘A solar pond for London’, Solar Energy, 19, 321–322.

    Article  Google Scholar 

  37. C.F. Tsang, M.J. Lippmann, C.B. Goranson and P.A. Witherspoon (1977), ‘Numerical modelling of cyclic storage of hot water in aquifers’ Rep LBL–-929, Lawrence Berkeley Lab., Berkeley, California.

    Google Scholar 

  38. J.P. Sauty, A.C. Gringarten, A. Menjoz and P.A. Landel, ‘Sensible energy storage in aquifers’, Theoretical study report, Bur de Rech Geol et Minieres, Serv Geol Natl Orleans, France, 11980.

    Google Scholar 

  39. G. De Marsily (1982), ‘Storage in the ground’ Thermal Energy Storage, (edited by G. Beghi ), D. Reidel Publishing Company, Holland, 1982.

    Google Scholar 

  40. G. de Marsily (1978), ‘Peut–on–Stoeker de 1′ energie dans la sol’ Annals des Mines, No. 5, p. 11–24.

    Google Scholar 

  41. G. Hellstrom, C.F. Tsang and J Claessoni (1979), ‘Heat storage in aquifers. Buoyancy flow and thermal stratification problems’, Rept. LBL 14246, Lawrence Berkeley Lab., Berkeley, California.

    Google Scholar 

  42. B. Mathey (11975), Le stockage de chaleur daes les nakes soulerraines (application a l′ energie solaire) 2 me Symposium de la Soceite Suisse Lausanne EPEL.

    Google Scholar 

  43. B. Mathey and A. Menjos (1978), ‘Underground heat storage: Choice of a geometry and efficiency’, Proceedings Thermal Energy Storage in Aquifers Workshop, Berkeley, Lawrence Berkeley Laboratory, LAB-8431, P. 80–87.

    Google Scholar 

  44. C.F. Tsang and C. Doughty (1982), ‘Design Studies for the third cycle of the mobile experimental’ STES News Letters, Vol. 5, No.1, Dec. 1982.

    Google Scholar 

  45. W.J. Schaetzle, C.E. Brett and D.M. Grubbs (1979), ‘Energy storage in ground water aquifers’ ISES Jubilee Congress, May 28–June 1, 1979, Atlanta, Georgia, USA.

    Google Scholar 

  46. Bonfils, P. Inis and J. Adnot (1981), ‘Seasonal storage in aquifers–actual results–further projects’ Solar World Forum, Proc. of ISES Congress, Brighton, U.K.

    Google Scholar 

  47. C.F. Tsang, (1981) ‘Theoretical studies in long term thermal energy s torage in aquifers’ chapter from Thermal Storage of Solar Energy, ( Edited C. den Ouden) Martinus Nijhoff Publishers, The Hague.

    Google Scholar 

  48. C. Doughty, G. Hellstrom, C.F. Tsang and J. Claesson (1982), ‘A dimensional parameter approach to the thermal behaviour of an aquifer thermal energy storage system’, Water Resources Research, 18, 571–587.

    Article  Google Scholar 

  49. F.J. Molz, A.P. Parr, P.F. Anderson, V.D. Lucido and J.C. Warman (1979), ‘Thermal energy storage in a confined aquifer, experimental results’ Water Resources Research, 15, 1509–1514.

    Article  Google Scholar 

  50. F.J. Molz, A.P. Parr and P.F. Anderson (1981), ‘Thermal energy storage in a confined aquifer second cycle’, Water Resources Research, 17, 611–645.

    Google Scholar 

  51. C.F. Tsang, D. Hopkings and G. Hellstrom (1980), ‘Acquifer thermal energy storage - A survey’ Lawrence Berkeley Laboratory, LBL - 10441.

    Google Scholar 

  52. Y. Cormany, P. Inis, J.P. Maire, G. de Marsily, H. Michel and M.F. Zaguine (1978), ‘Heat storage in a phreatic aquifer compuget experiment (Garg, France)’ Proceedings Thermal Energy Storage in Aquifers Workshops, Berkeley Lawrence Laboratory, LBL - 8431, p. 88–93.

    Google Scholar 

  53. T. Yokoyama, H. Umemiya, T. Teraoka, H. Watanabe, K. Katsuragi and K. Kasamaru (1978), ‘Seasonal regeneration through underground strata’ Proceedings Thermal Energy storage in aquifers workshop, Berkeley, Lawrence Berkeley Laboratory, LBL-8431 p. 94–106.

    Google Scholar 

  54. H.C. Hottel and B.B. Woertz (1982), ‘The performance of flat–plate Solar–Heat Collectors’, Trans. A.S.M.E., 64, 91,.

    Google Scholar 

  55. W. A. Shurcliff (11975), ‘Solar Heated Building, A brief survey’, 19 Appleton St., Cambridge Mass, 11th edition, 1975.

    Google Scholar 

  56. J. Sheldon (1975), ‘Underground Storage of Heat in Solar Heating Systems’, Solar Energy, 17, 137.

    Article  Google Scholar 

  57. C.F. Hooper, ‘Solar Space Heating Systems using Annual Heat Storage’, Progress Report for the U.S. Department of Energy Contract EY-76-C-02-2939000.

    Google Scholar 

  58. K.G.T. Hollands, G.MI.L. Gladwell and G.E. Schneider (1978), ‘Convective Heat Transfer from’ Hemispherical, Buried Tanks With Application to Solar Heating’, Proceedings of the 6th International Heat Transfer Conference, Toronto, Canada, August 1978, E 4–8.

    Google Scholar 

  59. F.C. Hooper and C.R. Attwater, (1 9 77), ‘A design method for heat loss calculation for in–ground heat storage tanks’, ASME Annual Meeting, Atlanta, Georgia, Nov. 1977.

    Google Scholar 

  60. F.C. Hooper et al, ‘.Solar Space Heating systems using Annual Heat Storage’, DOE Report No.C00-2329-5, Progress from July 1, 1977 to Dec. 30, 1977.

    Google Scholar 

  61. F.C. Hooper, C.R. Attwater, A.P. Brumger (1978), ‘Solar space heating system using annual heat storage’ DDE Progress Report No. C00-2939-6, Oct., 1978 Progress Report Jan. 1, 1978–Sept. 30, 1978.

    Google Scholar 

  62. J. Shelton (1975), ‘Underground storage of heat in solar heating systems’, Solar Energy, 17, 137–143.

    Article  Google Scholar 

  63. S. Anderson and A. Eriksson (1981), ‘Seasonal storage in hard rock–multiple well system’, Thermal storage of Solar Energy, (Edited C. den Ouden), Martinus Nijhoff Publishers, The Hague, 249–258.

    Google Scholar 

  64. B. Givoni (1977), ‘Underground longterm storage of solar energy an overview’, Solar Energy, 19, 617–623, and also Technical Report Ben Gurion University of the Negev, Israel, 11978.

    Google Scholar 

  65. O.B. Platell (1981), ‘The sunstore–deep storage heat storage, low temperature collectors and indoor heaters’, Solar World Forum, Proc. ISFS Congress, Brighton, U.K.

    Google Scholar 

  66. G. Summons (1976), ‘Heat and mass transfer in the earth’, Chapter 9, Alternate Energy Sources (Edited J.P. Harnett), Academic Press, New York, 245–278.

    Google Scholar 

  67. R.L. Nicholls (1977), ‘Optimum propertioning of an insulated earth cylinder for storage of solar heat’, Solar Energy, 19, 711–714.

    Article  Google Scholar 

  68. B.V. Karlikar and P.M. Desmond (1977), ‘Engineering heat Transfer’, West Publishing Company, New York.

    Google Scholar 

  69. L.S. Fisher, C.W.J. Koppen and J.J. Pute (1979), ‘Basic aspects of the seasonal storage of solar heat in the ground’, Proc. ISES Silver Jubilee Congress, Sun II, p. 609–613.

    Google Scholar 

  70. J.R. Simonson and J.D. Cleman, ‘A Theoretical investigation of interseasonal solar energy storage in the ground’. Personel communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Garg, H.P., Mullick, S.C., Bhargava, A.K. (1985). Long Term Energy Storage. In: Solar Thermal Energy Storage. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5301-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5301-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8841-1

  • Online ISBN: 978-94-009-5301-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics