Skip to main content

Isotope Ratio Mass-Spectrometry Studies of HD Formation by Nitrogenase

  • Conference paper
Gas Enzymology

Abstract

We have investigated the effect of the partial pressure of N2 and D2 on HD formation, H2 evolution and NH3 production by nitrogenase from Klebsiella pneumoniae and Clostridium pasteurianum. The distribution of electrons between the various substrates was tested both with homologous and heterologous component-proteins. By using pressures of up to four atmospheres we have been able to extend the concentration range of N2 and D2 in our investigations beyond that used in previous studies. We conclude that the formation of HD from D2 is a general property of nitrogenases, that N2-independent HD formation is minimal if it exists at all and that D2 enhances H2 evolution from nitrogenases. The question whether H2 evolution is an obligatory part of N2 reduction is discussed as are different suggested mechanisms for nitrogen fixation.

In conclusion our result support the mechanism for nitrogenase catalyzed reductions proposed by W. W. Cleland (Guth, J. and Burris R. H. (1983) Biochemistry 22, 5111–5122).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergersen, F.J. (1963) ‘The relationship between hydrogen evolution, hydrogen exchange, nitrogen fixation, and applied oxygen tension in soybean root nodules’. Aust. J. Biol. Sci. 16, 669–676.

    CAS  Google Scholar 

  • Bulen, W.A. (1976) ‘Nitrogenase from Azotobacter vinelandii and reactions affecting mechanistic interpretations’. Proc. Int. Symp. Nitrogen Fixation, 1st 1974 1, 177–186.

    Google Scholar 

  • Bulen, W.A., Burns, R.C. and LeComte, J.R. (1965) ‘Nitrogen fixation: hydrosulfite as electron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirilium rubrum’. Proc. Natl. Acad. Sci. U.S.A. 53, 532–539.

    Article  CAS  Google Scholar 

  • Burgess, B.K. (1984) ‘Structure and reactivity of nitrogenase — an overview’. In Advances in nitrogen fixation research (eds. C. Veeger & W.E. Newton) Nijhoff/Junk, Holland, pp. 81–91.

    Google Scholar 

  • Burgess, B.K., Corbin, J.L., Rubinson, J.F., Li, J.-g., Dilworth, M.J. and Newton, W.E. (1984) ‘Nitrogenase reactivity’. In Advances in nitrogen fixation research (eds. C. Veeger & W.E. Newton) Nijhoff/Junk, Holland, p. 146.

    Google Scholar 

  • Burgess, B.K., Wherland, S., Newton, W.E. and Stiefel, E.I. (1981) ‘Nitrogenase reactivity: Insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions’. Biochemistry 20, 5140–5146.

    Article  CAS  Google Scholar 

  • Burgess, B.K., Wherland, S., Stiefel, E.I. and Newton, W.E. (1980) ‘HD formation by nitrogenase: a probe for N2 reduction intermediates’. In Molybdenum chemistry of biological significance (eds. W.E. Newton & S. Otsuka) New York & London: Plenum Press, pp. 73–84.

    Google Scholar 

  • Burris, R.H. (1972) ‘Nitrogen fixation — assay methods and techniques’. Methods Enzymol. 24B, 415–531.

    Article  Google Scholar 

  • Burris, R.H. and Orme-Johnson, W.H. (1976) ‘Mechanism of biological N2 fixation’. Proc. Int. Symp. Nitrogen Fixation 1st, 208–233.

    Google Scholar 

  • Chatt, J. (1980) ‘Chemistry relevant to the biological fixation of nitrogen’. In Nitrogen fixation (eds. W.D.P. Stewart and J.R. Gallon) Proc. Phytochem. Soc. Eur., Acad. Press, pp. 1–18.

    Google Scholar 

  • Chaykin, S . (1969.) ‘Assay of nicotinamide deamidase. Determination of ammonia by the indophenol reaction’. Anal. Biochem. 31, 375–382.

    Article  CAS  Google Scholar 

  • Dilworth, M.J., Subramanian, D., Munson, T.O. and Burris, R.H. (1965) ‘The adenosine triphosphate requirement for nitrogen fixation in cell-free extracts of Clostridium pasteurianum’. Biochim. Biophys. Acta 99, 486–503.

    CAS  Google Scholar 

  • Eady, R.R. (1980) ‘Methods for studying nitrogenase’. In Methods for evaluating biological nitrogen fixation (Bergersen, F.J., Ed.) pp. 213–264. Wiley, Chichester, England.

    Google Scholar 

  • Emerich, D.W. and Burris, R.H. (1976a) ‘Complementary functioning of the component proteins of nitrogenase from several bacteria’. J. Bacteriol. 134, 936–943.

    Google Scholar 

  • Emerich, D.W. and Burris, R.H. (1976b) ‘Interactions of heterologous nitrogenase components that generate catalytically inactive complexes’. Proc. Natl. Acad. Sci. U.S.A. 73, 4369–4373.

    Article  CAS  Google Scholar 

  • Guth, J.H. and Burris, R.H. (1983) ’Inhibition of nitrogenase-catalyzed NH3 formation by H2O. Biochemistry 22, 5111–5122.

    Article  CAS  Google Scholar 

  • Hadfield, K.L. and Bulen, W.A. (1969) ‘Adenosine triphosphate requirement of nitrogenase from Azotobacter vinelandii’. Biochemistry 8, 5103–5105.

    Article  CAS  Google Scholar 

  • Hageman, R.V. and Burris, R.H. (1978a) ‘Kinetic studies on electron transfer and interaction between nitrogenase components from Azotobacter vinelandii’. Biochemistry 17, 4177–4124.

    Article  Google Scholar 

  • Hageman, R.V. and Burris, R.H. (1978b) ‘Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle’. Proc. Natl. Acad. Sci. U.S.A. 75, 2699–2702.

    Article  CAS  Google Scholar 

  • Hoch, G.E., Schneider, K.C. and Burris, R.H. (1960) ‘Hydrogen evolution and exchange and conversion of N2O to N2 by soybean root nodules’. Biochim. Biophys. Acta 292, 256–270.

    Google Scholar 

  • Hwang, J.C., Chen, C.H. and Burris, R.H. (1973) ‘Inhibition of nitro-genase-catalyzed reductions’. Biochim. Biophys. Acta 292, 256–270.

    Article  CAS  Google Scholar 

  • Jackson, E.K., Parshall, G.W. and Hardy, R.W.F. (1968) ‘Hydrogen reactions of nitrogenase (Formation of the molecule HD by nitrogenase and by an inorganic model)’. J. Biol. Chem. 243, 4952–58.

    CAS  Google Scholar 

  • Jensen, B.B. and Cox, R.P. (1983) ‘Direct measurements of steady-state kinetics of cyanobacterial N2 uptake by membrane-leak mass spectrometry and comparisons between nitrogen fixation and acetylene reduction’. Appl. Environm. Microbiol. 45, 1311–1337.

    Google Scholar 

  • Jensen, B.B. and Burris, R.H. (1984) ‘Effect of high pN2 and high pD2 on NH3 production, H2 evolution and HD formation by nitrogenases’. Biochemistry submitted.

    Google Scholar 

  • Kelly, M. (1968) ‘Hydrogen-deuterium exchange reactions catalysed by nitrogenase’. Biochem. J. 109, 322–324.

    CAS  Google Scholar 

  • Kelly, M. (1969) ‘Comparisons and cross reactions of nitrogenase from Klebsiella pneumoniae, Azotobacter chroococcum and Bacillus polymyxa’. Biochim. Biophys. Acta 191, 527–540.

    CAS  Google Scholar 

  • Li, J-L and Burris, R.H. (1983) ‘Influence of pN2 and pD2 on HD formation by various nitrogenases’. Biochemistry 22, 4472–4480.

    Article  CAS  Google Scholar 

  • Lockshin, A. and Burris, R.H. (1965) ‘Inhibitors of nitrogen fixation in extracts from Clostridium pasteurianum’. Biochim. Biophys. Acta 111, 1–10.

    CAS  Google Scholar 

  • Lowe, D.J. and Thorneley, R.N.F. (1984) ‘Pre-steady state kinetics of the formation of products and intermediates in dinitrogen reduction by nitrogenase’. In Advances in nitrogen fixation research (eds. C. Veeger & W.E. Newton) Nijhoff/Junk, Holland, p. 158.

    Google Scholar 

  • Lowe, D.J., Thorneley, R.N.F. and Postgate, J.R. (1984) ‘The mechanism of substrate reduction by nitrogenase’. In Advances in nitrogen fixation research (eds. C. Veeger & W.E. Newton) Nijhoff/Junk, Holland, pp. 133–138.

    Google Scholar 

  • Mortenson, E.L. and Thorneley, R.N.F. (1979) ‘Structure and Function of Nitrogenase’. Ann. Rev. Biochem. 48, 387–418.

    Article  CAS  Google Scholar 

  • Newton, W.E., Bulen, W.A., Hadfield, K.L., Stiefel, E.I. and Watt, G.D. (1977) ‘HD formation as a probe for intermediates in N2 reduction’. Recent Dev. Nitrogen Fixation (Proc. Int. Symp.) 2nd 1976, 1, 119–130.

    Google Scholar 

  • Orme-Johnson, W.H., Davis, L.C., Henzl, M.T., Averill, B.A., Orme-Johnson, N.R., Munck, E. and Simmerman, R. (1977) ‘Components and pathways in biological nitrogen fixation’. Proc. Int. Symp. Recent Dev. Nitrogen Fixation, 2nd, 131–178.

    Google Scholar 

  • Rivera-Ortiz, J.M. and Burris, R.H. (1975) ‘Interactions among substrates and inhibitors of nitrogenase’. J. Bacteriol. 123, 537–545.

    CAS  Google Scholar 

  • Shan, W.K., Davis, L.C., Gordon, J.K., Orme-Johnson, W.H. and Brill, W.J. (1973) ‘Nitrogenase III. Nitrogenaseloss, mutants of Azotobacter vinelandii. Activities, cross-reactions and EPR-spectra’. Biochim. Biophys. Acta 292, 246–270.

    Article  Google Scholar 

  • Simpson, F.B. and Burris, R.H. (1984) ‘A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase’. Science 224, 1094–1096.

    Article  Google Scholar 

  • Strandberg, G.W. and Wilson, P.W. (1967) ‘Molecular H2 and the pN2 function of Azotobacter’. Proc. Natl. Acad. Sci. U.S.A. 58, 1404–1409.

    Article  CAS  Google Scholar 

  • Thorneley, R.N.F. and Lowe, D.J. (1982) ‘Mechanistic studies on nitrogenase from Klebsiella pneumoniae using rapid quench technique’. Israel J. Bot. 31, 61–71.

    CAS  Google Scholar 

  • Thorneley, R.N.F. and Lowe, D.J. (1983) ‘Nitrogenase of Klebsiella pneumoniae. Kinetics of dissociation of oxidized iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction’. Biochem. J. 215, 393–403.

    CAS  Google Scholar 

  • Turner, G.L. and Bergersen, F.J. (1969) ‘The relationship between nitrogen fixation and the production of DH from D2 by cell-free extracts of soya-bean nodule voeteroids’. Biochem. J. 115, 529–535.

    CAS  Google Scholar 

  • Wherland, S., Burgess, B.K., Stiefel, E.I. and Newton, W.E. (1981) ‘Nitrogenase reactivity: effects of component ratio on electron flow and distribution during nitrogen fixation’. Biochemistry 20, 5132–5140.

    Article  CAS  Google Scholar 

  • Wilson, P.W. and Umbreit, W.W. (1937) ‘Symbiotic nitrogen fixation. III. Hydrogen as a specific inhibitor’. Arch. Mikrobiol. 8, 440–457.

    Article  CAS  Google Scholar 

  • Wyss, O. and Wilson, P.W. (1941) ‘Mechanism of biological nitrogen fixation. VI. Inhibition of Azotobacter by hydrogen’. Proc. Natl. Acad. Sci. U.S.A. 27, 162–168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Jensen, B.B. (1985). Isotope Ratio Mass-Spectrometry Studies of HD Formation by Nitrogenase. In: Degn, H., Cox, R.P., Toftlund, H. (eds) Gas Enzymology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5279-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5279-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8831-2

  • Online ISBN: 978-94-009-5279-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics