Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 142))

  • 169 Accesses

Abstract

Electrons and ions have been used for the excitation of matter ever since the Franck-Hertz experiment in 1914 (see [1]). Although it is not useful to speak of beam experiments in those early years, it soon became obvious that the use of a monochromatic electron or ion beam would open up new avenues for experimental and theoretical advancement. In 1925, Goudsmit and Uhlenbeck [2] discovered electron spin and were thereby able to explain the multiplet structures in their experimental spectra. (This is especially important for low-energy electron-impact experiments, where the spin also determines transition probabilities.) A third important development, the Bethe theory (1930), must be mentioned: This theory provided a basis for the analysis of the interaction between high-energy electrons and matter [3]. The initial formalism for explaining results was now complete; it became operational when, after World War II, technical improvements allowed for the study of single-particle collision processes. Better vacuum systems, electron optics and solid-state electronics permitted an enormous increase in experimental results. These results concerned not only the use of beams for gas-phase spectroscopic research but many other applications as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Franck and G. Hertz, Phys. Zeitschrift 20, 132 (1919)

    CAS  Google Scholar 

  2. G. E. Uhlenbeck and S. Goudsmit, Naturwissenschaften 13, 132 (1919)

    Google Scholar 

  3. H. A. Bethe, Ann. Rev. der Phys. 5, 235 (1930)

    Article  Google Scholar 

  4. G. J. Verhaart and H. H. Brongersma, Chem. Phys. 52, 431 (1980)

    Article  CAS  Google Scholar 

  5. G. J. Verhaart, W. J. van der Hart and H. H. Brongersma, Chem. Phys. 34, 161 (1978)

    Article  CAS  Google Scholar 

  6. P. Burrow and J. A. Michejda, Argonne Natl. Lab. Rep., 113 (1976–1977)

    Google Scholar 

  7. G. J. Verhaart, Ph.D. thesis, Leiden University (1980)

    Google Scholar 

  8. G. R. Mohlmann and F. J. de Seer, Phys. Scripta 16, 51 (1977)

    Article  CAS  Google Scholar 

  9. P. A. Fraser, Can. J. Phys. 32, 515 (1954)

    Article  CAS  Google Scholar 

  10. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)

    Article  CAS  Google Scholar 

  11. U. Fano, Phys. Rev. 95, 198 (1954)

    Article  Google Scholar 

  12. W. J. van der Hart and H. A. van Sprang, J. Am. Chem. Soc. 99, 32 (1977)

    Article  Google Scholar 

  13. C. I. M. Beenakker and F. J. de Heer, Chem. Phys. 6, 291 (1974)

    Article  CAS  Google Scholar 

  14. E. H. van Veen and F. L. Plantenga, Chem. Phys. Lett. 38, 493 (1976)

    Article  Google Scholar 

  15. P. J. H. Woltz and A. H. Nielson, J. Chem. Phys. 20, 307 (1952)

    Article  CAS  Google Scholar 

  16. E. K. Plyler and N. Acquista, J. Res. Natl. Bur. Stand. 48, 92 (1952)

    CAS  Google Scholar 

  17. J. P. Ziesel, I. Nenner and G. J. Schulz, J. Chem. Phys. 63, 1943 (1975)

    Article  CAS  Google Scholar 

  18. K. Rohr and F. Linder, J. Phys. B9, 2521 (1976)

    Google Scholar 

  19. R. K. Curran, J. Chem. Phys. 34, 2007 (1961)

    Article  CAS  Google Scholar 

  20. W. M. Hickman and D. Berg, J. Chem. Phys. 29, 517 (1958)

    Article  Google Scholar 

  21. E. Illenberger, H. U. Scheunemann and H. Baumgartel, Chem. Phys. 37, 21 (1979)

    Article  CAS  Google Scholar 

  22. T. A. Lehman and M. M. Bursey, Ion Cyclotron Resonance Spectroscopy ( Wiley, New York, 1976 )

    Google Scholar 

  23. H. Dispert and K. Lacmann, Int. J. Mass Spectrom. and Ion Phys. 28, 49 (1978)

    Article  CAS  Google Scholar 

  24. W. J. van der Hart and G. J. Verhaart, unpublished results

    Google Scholar 

  25. G. J. Verhaart, H. A. van Sprang and H. H. Brongersma, Chem. Phys. 51, 389 (1980)

    Article  CAS  Google Scholar 

  26. A. W.’ Kleyn, private communication

    Google Scholar 

  27. F. H. Dorman, J. Chem. Phys. 44, 3856 (1966)

    Article  Google Scholar 

  28. R. M. Reese, V. H. Dibeler and F. L. Mohler, J. Res. 57, 367 (1956)

    CAS  Google Scholar 

  29. J. J. de Corpo, D. A. Bafus and J. L. Franklin, J. Chem. Phys. 54, 1592 (1971)

    Article  Google Scholar 

  30. M. B. Robin, Higher Excited States in Polyatomic MoleculesVol. I (Academic Press, New York, 1974 ), p. 76

    Google Scholar 

  31. K. Hiraoka and W. H. Hamill, J. Chem. Phys. 59, 5749 (1973)

    Article  CAS  Google Scholar 

  32. L. Sanche, J. Chem. Phys. 71, 4860 (1979)

    Article  CAS  Google Scholar 

  33. B. Ö. Jonsson, E. Lindholm and A. Skerbele, Int. J. Mass Spectrom. Ion Phys. 3, 385 (1969)

    Article  CAS  Google Scholar 

  34. L. Sanche, G. Bader and L. Caron, J. Chem. Phys. 76, 4016 (1982)

    Article  CAS  Google Scholar 

  35. H. H. Brongersma, Ph.D. thesis, Leiden University (1968)

    Google Scholar 

  36. E. H. van Veen, Chem. Phys. Lett. 41, 535 (1976)

    Article  Google Scholar 

  37. S. Gewurtz, H. Lew and P. Flaieck, Can. J. Phys. 53, 1097 (1975)

    Article  CAS  Google Scholar 

  38. H. A. van Sprang and F. J. de Heer, Chem. Phys. 33. 73 (1978)

    Article  Google Scholar 

  39. J. Berkowitz, W. A. Chupka, P. M. Guyon, J. H. Holloway and R. Spohr, J. Chem. Phys. 54, 5165 (1971)

    Article  Google Scholar 

  40. H. A. van Sprang, H. H. Brongersma and F. J. de Heer, Chem. Phys. 38, 277 (1979)

    Article  Google Scholar 

  41. J. E. Hesser and K. Dressier, J. Chem. Phys. 47, 3443 (1967)

    Article  CAS  Google Scholar 

  42. H. A. van Sprang, H. H. Brongersma and F. J. de Heer, Chem. Phys. 35, 51 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Brongersma, H.H., van Sprang, H.A., Verhaartt, G.J. (1985). Electron-Impact Spectroscopy of Molecules. In: McGlynn, S.P., Findley, G.L., Huebner, R.H. (eds) Photophysics and Photochemistry in the Vacuum Ultraviolet. NATO ASI Series, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5269-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5269-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8827-5

  • Online ISBN: 978-94-009-5269-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics