Propagation, Spreading, and Scattering

  • George H. Duffey
Part of the Fundamental Theories of Physics book series (FTPH, volume 2)


The state of each submicroscopic particle in a system is described, as we have noted before, by a function Ψ. The observable probability-density distribution of the particle over space at each time t and the observable changes associated with increasing time are derivable from this function. Analogous to the classic mechanical current found in a moving fluid is an apparent current of streaming probability density.


Wave Packet Incident Beam Partial Wave Incoming Wave Outgoing Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Burkhardt, H.: 1969, Dispersion Relation Dynamics, American Elsevier, New York, pp. 80–92.Google Scholar
  2. Merzbacher, E.: 1970, Quantum Mechanics, 2nd edn, Wiley, New York, pp. 215–250.Google Scholar
  3. Newton, R. G.: 1966, Scattering Theory of Waves and Particles, McGraw-Hill, New York, pp. 3–150.Google Scholar
  4. Perkins, D. H.: 1972, Introduction to High Energy Physics, Addison-Wesley, Reading, Mass., pp. 265–287.Google Scholar
  5. Rapp, D.: 1971, Quantum Mechanics, Holt, Rinehart and Winston, New York, pp. 519–551.Google Scholar


  1. Balasubramanian, S.: 1980, ‘Comment on “Use of the Time Evolution Operator”’, Am. J. Phys. 48, 985–986.ADSCrossRefGoogle Scholar
  2. Berrondo, M., and Garcia-Calderon, G.: 1982, ‘Resonances in Repulsive Singular Potentials as an Eigenvalue Problem’, Eur. J. Phys. 3, 34–38.MathSciNetCrossRefGoogle Scholar
  3. Berry, M. V., and Balazs, N. L.: 1979, ‘Nonspreading Wave Packets’, Am. J. Phys. 47, 264–267.ADSCrossRefGoogle Scholar
  4. Bramhall, M. H., and Casper, B. M.: 1970, ‘Reflections on a Wave Packet Approach to Quantum Mechanical Barrier Penetration’, Am. J. Phys. 38, 1136–1145.ADSCrossRefGoogle Scholar
  5. Chalk, J.: 1981, ‘Elementary Approach to Separable Potentials of Exponential Form’, Am. J. Phys. 49, 1069–1071.Google Scholar
  6. Clark, C. W.: 1979, ‘Coulomb Phase Shift’, Am J. Phys. 47, 683–684.ADSCrossRefGoogle Scholar
  7. Corinaldesi, E., and Rafeli, F.: 1978, ‘Aharonov-Bohm Scattering by a Thin Impenetrable Solenoid’, Am J. Phys. 46,1185–1187.ADSCrossRefGoogle Scholar
  8. Delville, A., Jasselette, P., and Vandermeulen, J.: 1978, ‘Elementary Quantum Mechanics in a High-Energy Process’, Am J. Phys. 46, 907–909.ADSCrossRefGoogle Scholar
  9. Downs, B. W., and Ram, B.: 1978, ‘Hard-Core Potentials in Quantum Mechanics’, Am J. Phys. 46, 164–168.MathSciNetADSCrossRefGoogle Scholar
  10. Farina, J. E. G.: 1977, ‘Classical and Quantum Spreading of Position Probability’, Am J. Phys. 45, 1200–1202.MathSciNetADSCrossRefGoogle Scholar
  11. Fernow, R. C.: 1976, ‘Expansions of Spin-1/2 Expectation Values’, Am J. Phys. 44, 560–563.ADSCrossRefGoogle Scholar
  12. Gijzeman, O. L. J., and Naqvi, K. R.: 1979, ‘Use of the Time Evolution Operator’, Am J. Phys. 47, 384–385.ADSCrossRefGoogle Scholar
  13. Greenman, J. V.: 1972, ‘Non-Dispersive Mirror Wavepackets’[, Am J. Phys. 40,1193–1201.ADSCrossRefGoogle Scholar
  14. Grübl, G. J., and Leubner, C.: 1980, ‘Current Misconception Concerning the Time Evolution Operator’, Am J. Phys. 48, 484–486.ADSCrossRefGoogle Scholar
  15. Hobbie, R. K.. 1962, ‘A Simplified Treatment of the Quantum-Mechanical Scattering Problem Using Wave Packets’, Am J. Phys. 30, 857–864.ADSCrossRefGoogle Scholar
  16. Holstein, B. R., and Swift, A. R.: 1972, ‘Spreading Wave Packets—A Cautionary Note’, Am J. Phys. 40, 829–832.MathSciNetADSCrossRefGoogle Scholar
  17. Ignatovich, V. K.: 1978, ‘Nonspreading Wave Packets in Quantum Mechanics’, Found. Phys. 8, 565–571.ADSCrossRefGoogle Scholar
  18. Kayser, B.: 1974, ‘Classical Limit of Scattering in a 1/r 2 Potential’, Am J. Phys. 42, 960–964.ADSCrossRefGoogle Scholar
  19. Keller, J. B.: 1972, ‘Quantum Mechanical Cross Sections for Small Wavelengths’, Am J. Phys. 40, 1035–1036.ADSCrossRefGoogle Scholar
  20. Kujawski, E.: 1971, ‘Additivity of Phase Shifts for Scattering in One Dimension’, Am J. Phys. 39, 1248–1254.ADSCrossRefGoogle Scholar
  21. Lapidus, I. R.: 1973, ‘Scattering of Charged Particles by a Localized Magnetic Field’, Am J. Phys. 41, 822–823.ADSCrossRefGoogle Scholar
  22. Lapidus, I. R.: 1982, ‘Quantum-Mechanical Scattering in Two Dimensions’, Am J. Phys. 50, 45–47.ADSCrossRefGoogle Scholar
  23. Lee, H.-W.: 1982, ‘Spreading of a Free Wave Packet’, Am J. Phys. 50, 438–440.ADSCrossRefGoogle Scholar
  24. Lieber, M.: 1973, ‘The Complete Asymptotic Expansion of the Continuum Schrodinger Wave Function’, Am J. Phys. 41, 497–502.ADSCrossRefGoogle Scholar
  25. Meijer, P. H. E., and Repace, J. L.: 1975, ‘Phase Shifts of the Three-Dimensional Spherically Symmetric Square Wave Potential’, Am J. Phys. 43, 428–433.ADSCrossRefGoogle Scholar
  26. Segre, C. U., and Sullivan, J. D.: 1976, ‘Bound-State Wave Packets’, Am J. Phys. 44, 729–732.ADSCrossRefGoogle Scholar
  27. Singh, I., and Whitaker, M. A. B.: 1982, ‘Role of the Observer in Quantum Mechanics and the Zeno Paradox’, Am J. Phys. 50, 882–887.ADSCrossRefGoogle Scholar
  28. Synge, J. L.: 1972 ‘A Special Class of Solutions of the Schrodinger Equation for a Free Particle’, Found. Phys. 2, 35–40.MathSciNetADSCrossRefGoogle Scholar
  29. Woodsum, H. C., and Brownstein, K. R.: 1977, ‘Tumbling Motion of Free Three-Dimensional Wave Packets’, Am. J. Phys. 45, 667–670.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • George H. Duffey
    • 1
  1. 1.Department of PhysicsSouth Dakota State UniversityUSA

Personalised recommendations