Advertisement

Angular Motion in a Spherically Symmetric Field

  • George H. Duffey
Part of the Fundamental Theories of Physics book series (FTPH, volume 2)

Abstract

We have seen how rotation of a linear system of particles is modeled by a single particle of reduced mass μ traveling around the center of mass of the system. The probability per unit volume that the model particle is distance r from the center, with colrtitude θ from the axis of rotation and azimuthal angle ϕ about this axis, is given by the product [Ψ(r, θ, ϕ)]*Ψ(r, θ, ϕ).

Keywords

Radius Vector Angular Motion Schrodinger Equation Associate Legendre Function Magnetic Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  1. Arfken, G.: 1970, Mathematical Methods for Physicists, 2nd edn, Academic Press, New York, pp. 534 – 608.Google Scholar
  2. Eyring, H., Walter, J., and Kimball, G. E.: 1944, Quantum Chemistry, Wiley, New York, pp. 48 – 91.Google Scholar
  3. Schiff, L. I.: 1968, Quantum Mechanics, 3rd edn, McGraw-Hill, New York, pp. 66 – 69.Google Scholar
  4. Ziock, K.: 1969, Basic Quantum Mechanics, Wiley, New York, pp. 73 – 103.Google Scholar

Articles

  1. Bordass, W. T., and Linnett, J. W.: 1970, ‘A New Way of Presenting Atomic Orbitals’, J. Chem. Educ. 47, 672–675.CrossRefGoogle Scholar
  2. Bragg, L. E.: 1970, ‘Legendre’s Equation for Undergraduates’, Am. J. Phys. 38, 641–643.ADSCrossRefGoogle Scholar
  3. Essen, H.: 1978, ‘Quantization and Independent Coordinates’, Am. J. Phys. 46, 983–988.MathSciNetADSCrossRefGoogle Scholar
  4. Ley-Koo, E.: 1972, ‘On the Expansion of a Plane Wave in Spherical Waves’, Am. J. Phys. 40, 1538–1539.ADSCrossRefGoogle Scholar
  5. Miyakawa, K.: 1969, ‘Legendre’s Polynomials in Undergraduate Courses’, Am. J. Phys. 37, 924–925.ADSCrossRefGoogle Scholar
  6. Ramamurti, G., Ranganathan, K., and Ganesan, L. R.: 1972, ‘Solutions of Legendre’s Equation—Simple Proof’, Am. J. Phys. 40, 913.ADSCrossRefGoogle Scholar
  7. Whippman, M. L.: 1966, ‘Orbital Angular Momentum in Quantum Mechanics’, Am. J. Phys. 34, 656–659.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • George H. Duffey
    • 1
  1. 1.Department of PhysicsSouth Dakota State UniversityUSA

Personalised recommendations