Wave Packets, Potentials, and Forces

  • George H. Duffey
Part of the Fundamental Theories of Physics book series (FTPH, volume 2)


We have seen how a state function having a definite wavevector and angular frequency represents conditions in a uniform beam of particles. In like manner, a single function represents the free rotation of a system about an axis. Furthermore, a particle confined in a parabolic or Coulombic potential appears in states possessing a definite angular frequency and energy.


Wave Function Wave Packet Group Velocity Angular Frequency Uncertainty Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Arfken, G.: 1970, Mathematical Methods for Physicists, 2nd edn, Academic Press, New York, pp. 643–688.Google Scholar
  2. Beard, D. B., and Beard, G. B.: 1970, Quantum Mechanics with Applications, Allyn and Bacon, Boston, pp. 12–65.Google Scholar
  3. Gottfried, K.: 1966, Quantum Mechanics, Volume I: Fundamentals, Benjamin, New York, pp. 16–76.Google Scholar
  4. Merzbacher, E.: 1970, Quantum Mechanics, 2nd edn, Wiley, New York, pp. 13–52.Google Scholar
  5. Park, D.: 1974, Introduction to the Quantum Theory, McGraw-Hill, New York, pp. 60–88.Google Scholar
  6. White, R. L.: 1966, Basic Quantum Mechanics, McGraw-Hill, New York, pp. 124–146.Google Scholar


  1. Abbott, L. F., and Wise, M. B.: 1981, ‘Dimension of a Quantum-Mechanical Path’, Am. J. Phys. 49, 37–39.MathSciNetADSCrossRefGoogle Scholar
  2. Aharonov, Y., and Carmi, G.: 1974, ‘Quantum-Related Reference Frames and the Local Physical Significance of Potentials’, Found. Phys. 4, 75–81.ADSCrossRefGoogle Scholar
  3. Amand, J., St, and Uritam, R. A.: 1973, ‘A Simple Illustration of the Uncertainty Relation in Hadronic Collisions’, Am. J. Phys. 41, 650–653.ADSCrossRefGoogle Scholar
  4. Berry, M. V.: 1980, ‘Exact Aharonov-Bohm Wavefunction Obtained by Applying Dirac’s Magnetic Phase Factor’, Eur. Phys. 1, 240–244.CrossRefGoogle Scholar
  5. Boyer, T. H.: 1972, ‘Misinterpretation of the Aharonov-Bohm Effect’, Am. J. Phys. 40, 56–59.ADSCrossRefGoogle Scholar
  6. Brown, L. S.: 1973, ‘Classical Limit of the Hydrogen Atom’, Am. J. Phys. 41, 525–530.ADSCrossRefGoogle Scholar
  7. Buch, L. H., and Denman, H. H.: 1974, ‘Solution of the Schrodinger Equation for Some Electric Field Problems’, Am. J. Phys. 42, 304–309.ADSCrossRefGoogle Scholar
  8. Cohen, B. L.: 1965, ‘A Simple Treatment of Potential Barrier Penetration’, Am. J. Phys. 33, 97–98.ADSCrossRefGoogle Scholar
  9. Cohn, J.: 1972, ‘Quantum Theory in the Classical Limit’,Am. J. Phys. 40,463–467.ADSCrossRefGoogle Scholar
  10. Cook, L. F.: 1980, ‘Einstein and Δt ΔE’, Am. J. Phys. 48,142–145.ADSCrossRefGoogle Scholar
  11. Crawford, F. S.: 1982, ‘Can a Wave Packet be Wider than it is Long?’, Am. J. Phys. 50, 199.ADSCrossRefGoogle Scholar
  12. Crawford, F. S.: 1982, ‘Elementary Derivation of the Magnetic Flux Quantum’, Am. J. Phys. 50, 514–516.ADSCrossRefGoogle Scholar
  13. Danos, M.: 1982, ‘Bohm-Aharonov Effect: The Quantum Mechanics of the Electrical Transformer’, Am. J. Phys. 50, 64–66.ADSCrossRefGoogle Scholar
  14. Diu, B.: 1980, ‘Plane Waves and Wave Packets in Elementary Quantum Mechanics Problems’, Eur. J. Phys. 1, 231–240.CrossRefGoogle Scholar
  15. Eck, J. S., and Thompson, W. J.: 1977, ‘Dissipative Forces and Quantum Mechanics’, Am. J. Phys. 45, 161–163.ADSCrossRefGoogle Scholar
  16. Erlichson, H.: 1970, ‘Aharonov—Bohm Effect— Quantum Effects on Charged Particles in Field-Free Regions’, Am. J. Phys.38, 162–173.ADSCrossRefGoogle Scholar
  17. Espinosa, J. M.: 1982, ‘Physical Properties of de Broglie’s Phase Waves’,Am. J. Phys. 50, 357–362.MathSciNetADSCrossRefGoogle Scholar
  18. Garwin, L. J., and Garwin, R. L.: 1977, ‘On the Strength of the Dirac Monopole’, Am. J. Phys. 45,164–165.ADSCrossRefGoogle Scholar
  19. Greenberger, D. M.: 1980, ‘Comment on “Nonspreading Wave Packets”’, Am; J. Phys. 48, 256.ADSCrossRefGoogle Scholar
  20. Harris, R. A., and Strauss, H. L.; 1978, ‘Paradoxes from the Uncertainty Principle’, J. Chem. Educ. 55, 374–375.CrossRefGoogle Scholar
  21. Hill, R. N.: 1973, vA Paradox Involving the Quantum Mechanical Ehrenfest Theorem’, Am. J. Phys. 41, 736–738.ADSCrossRefGoogle Scholar
  22. Holze, D. H., and Scott, W. T.: 1964, ‘Relationships of Wave Packet Variances’, Am. J. Phys. 32, 853–856.ADSCrossRefGoogle Scholar
  23. Hrasko, P.: 1977, ‘Quasiclassical Quantization of the Magnetic Charge’, Am. J. Phys. 45,838– 840.ADSCrossRefGoogle Scholar
  24. Janossy, L.: 1974, ‘The Physical Interpretation of Wave Mechanics. II’, Found. Phys. 4,445– 452.MathSciNetADSCrossRefGoogle Scholar
  25. Klein, J. R.: 1980, ‘Do Free Quantum-Mechanical Wave Packets Always Spread?’, Am. J. Phys. 48,1035–1037.ADSCrossRefGoogle Scholar
  26. Konopinski, E. J.: 1978, ‘What the Electromagnetic Vector Potential Describes’, Am. J. Phys.46, 499–502.MathSciNetADSCrossRefGoogle Scholar
  27. Krivchenkov, V. D., and Kukin, V. D.: 1972, ‘Equidistant Spacing of the Energy Levels of the One-Dimensional Schrodinger Equation’, Soviet Phys. Doklady 17, 444–446.ADSGoogle Scholar
  28. Lai, C. S.: 1979, ‘Spreading of Wave Packets in the Coordinate Representation’, Am. J. Phys. 47, 766–768.ADSCrossRefGoogle Scholar
  29. Lieber, M.: 1975, ‘Quantum Mechanics in Momentum Space: An Illustration’, Am. J. Phys. 43, 486–491.ADSCrossRefGoogle Scholar
  30. Lubkin, E.: 1971, ‘A Simple Picture for Dirac’s Charge-Pole Quantization Law’, Am. J. Phys. 39, 94–96.ADSCrossRefGoogle Scholar
  31. Marshall, A. G., and Comisarow, M. B.: 1975, ‘Fourier Transform Methods in Spectroscopy’, J. Chem. Educ. 52, 638–641.CrossRefGoogle Scholar
  32. Paul, D.: 1980, ‘Dispersion Relation for de Broglie Waves’, Am. J. Phys. 48, 283–284.ADSCrossRefGoogle Scholar
  33. Pena, de la, L.: 1980, ‘Conceptually Interesting Generalized Heisenberg Inequality’, Am. J. Phys. 48, 775–776.ADSCrossRefGoogle Scholar
  34. Peres, A.: 1980, ‘Measurement of Time by Quantum Clocks’, Am. J.. Phys. 48, 552–557.MathSciNetADSCrossRefGoogle Scholar
  35. Peslak, J., Jr: 1979, ‘Comparison of Classical and Quantum Mechanical Uncertainties’, Am. J. Phys. 47, 39–45.MathSciNetADSCrossRefGoogle Scholar
  36. Roy, C. L., and Sannigrahi, A. B.: 1979, ‘Uncertainty Relation between Angular Momentum and Angle Variable’, Am. J. Phys. 47, 965–967.ADSCrossRefGoogle Scholar
  37. Roychoudhuri, C.: 1978, ‘Heisenberg’s Microscope—A Misleading Illustration’, Found. Phys. 8, 845–849.ADSCrossRefGoogle Scholar
  38. Santana, P. H. A., and Rosato, A.: 1973, ‘Use of the Laplace Transform Method to Solve the One-Dimensional Periodic-Potential Problem’, Am. J. Phys. 41, 1138–1144.ADSCrossRefGoogle Scholar
  39. Semon, M. D.: 1982, ‘Experimental Verification of an Aharonov-Bohm Effect in Rotating Reference Frames’, Found. Phys. 12, 49–57.MathSciNetADSCrossRefGoogle Scholar
  40. Snygg, J.: 1977, ‘Wave Functions Rotated in Phase Space’, Am. J. Phys. 45, 58–60.MathSciNetADSCrossRefGoogle Scholar
  41. Sorkin, R.: 1979, ‘On the Failure of the Time-Energy Uncertainty Principle’, Found. Phys. 9, 123–128.ADSCrossRefGoogle Scholar
  42. Stevens, K. W. H.: 1980, ‘A Note on Quantum Mechanical Tunnelling’, Eur. J. Phys. 1, 98–101.MathSciNetCrossRefGoogle Scholar
  43. Taylor, P. L.: 1969, ‘Wave Mechanics and the Concept of Force’, Am. J. Phys. 37, 29–33.ADSCrossRefGoogle Scholar
  44. Weichel, H.: 1976, ‘The Uncertainty Principle and the Spectral Width of a Laser Beam’, Am. J. Phys. 44, 839–840.ADSCrossRefGoogle Scholar
  45. Williams, D. N.: 1979, ‘New Mathematical Proof of the Uncertainty Relation’, Am. J. Phys. 47, 606–607.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • George H. Duffey
    • 1
  1. 1.Department of PhysicsSouth Dakota State UniversityUSA

Personalised recommendations