Advertisement

Quantization of Vibratory Motion

  • George H. Duffey
Part of the Fundamental Theories of Physics book series (FTPH, volume 2)

Abstract

When submicroscopic entities are examined sufficiently closely, many are found to be composite. Often the unit consists of relatively massive particles held together by oppositely charged, much less massive, light particles. Free movement of the center of mass of the unit is called ‘translation’, while free movement around the center is called ‘rotation’. We have already considered such motions.

Keywords

Harmonic Oscillator Vibrational Mode Force Constant State Function Diatomic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Books

  1. Borowitz, S.: 1967, Fundamentals of Quantum Mechanics, Benjamin, New York, pp. 203–226.zbMATHGoogle Scholar
  2. Colthup, N. B., Daly, L. H., and Wiberley, S. E.: 1964, 1964, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, pp. 1–97.Google Scholar
  3. Horak, M., and Vitek, A.: 1979, Interpretation and Processing of Vibrational Spectra, Wiley, New York, pp. 1–413.Google Scholar
  4. Potts, W. J., Jr: 1963, Chemical Infrared Spectroscopy, Wiley, New York, pp. 1–91.Google Scholar
  5. White, R. L.: 1966, Basic Quantum Mechanics, McGraw-Hill, New York, pp. 67–93.Google Scholar

Articles

  1. Ashby, R. A.: 1975, ‘Flames: A Study in Molecular Spectroscopy’, J. Chem. Educ. 52, 632–637.CrossRefGoogle Scholar
  2. Brabson, G. D.: 1973, ‘Calculation of Morse Wave Functions with Programmable Desktop Calculators’, J. Chem. Educ. 50, 397–399.CrossRefGoogle Scholar
  3. Buchdahl, H. A.: 1974, ‘Remark on the Solutions of the Harmonic Oscillator Equation’, Am. J. Phys. 42, 47–50.MathSciNetADSCrossRefGoogle Scholar
  4. Gettys, W. E., and Graben, H. W.: 1975, ‘Quantum Solution for the Biharmonic Oscillator’, Am. J. Phys. 43, 626–629.ADSCrossRefGoogle Scholar
  5. Gibbs, R. L.: 1975, ‘The Quantum Bouncer’, Am. J. Phys. 43, 25–28.ADSCrossRefGoogle Scholar
  6. Jinks, K. M.: 1975, ‘A Particle in a Chemical Box’, J. Chem. Educ. 52, 312–313.CrossRefGoogle Scholar
  7. Manka, C. K.: 1972, ‘More on Numerical Solutions to Simple One-Dimensional Schrodinger Equations’, Am. J. Phys. 40, 1539–1542.ADSCrossRefGoogle Scholar
  8. Mazur, P., and Barron, R. H.: 1974, ‘On a Variation of a Derivation of the Schrödinger Equation’, Am. J. Phys. 42, 600–602.ADSCrossRefGoogle Scholar
  9. Meyer-Vernet, N.: 1982, ‘Strange Bound States in the Schrödinger Wave Equation: When Usual Tunneling Does Not Occur’, Am. J. Phys. 50, 354–356.ADSCrossRefGoogle Scholar
  10. Mohammad, S. N.: 1979, ‘Calculations of Vibrational—Rotational Coupling Constants in Diatomic Molecules’, Nuovo Cimento 49B, 124–134.ADSGoogle Scholar
  11. Noid, D. W., Koszykowski, M. L., and Marcus, R. A.: 1980, ‘Molecular Vibration and the Normal Mode Approximation’, J Chem. Educ. 57,624–626.CrossRefGoogle Scholar
  12. Winn, J. S.: 1981, ‘Analytic Potential Functions for Diatomic Molecules: Some Limitations’, J. Chem. Educ. 58, 37–38.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • George H. Duffey
    • 1
  1. 1.Department of PhysicsSouth Dakota State UniversityUSA

Personalised recommendations