Quantization of Translatory Motion

  • George H. Duffey
Part of the Fundamental Theories of Physics book series (FTPH, volume 2)


Each of us learns about the physical world through (a) experiencing various processes in one’s own body, (b) interacting with external objects close at hand and far away, (c) constructing and manipulating devices, (d) observing and measuring reactions of the resulting instruments, and (e) studying accounts of the experiences, manipulations, and measurements of others.


Wave Function Quantum Number State Function Translatory Motion Translational Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Bastin, T. (ed.): 1971, Quantum Theory and Beyond, Cambridge University Press, London, pp. 1–40.Google Scholar
  2. Jammer, M.: 1966, The Conceptual Development of Quantum Mechanics, McGraw–Hill, New York, pp. 1–382.Google Scholar
  3. Kuhn, T. S.: 1978, Black–Body Theory and the Quantum Discontinuity, 1894–1912, Oxford University Press, New York, pp. 1–356.Google Scholar
  4. Park, D.: 1974, Introduction to the Quantum Theory, 2nd edn, McGraw–Hill, New York, pp. 3–59.Google Scholar
  5. Petersen, A.: 1968, Quantum Physics and the Philosophical Tradition, M.I.T. Press, Cambridge, Mass., pp. 1–190.Google Scholar
  6. Ziock, K.: 1969, Basic Quantum Mechanics, Wiley, New York, pp. 1–22.Google Scholar


  1. Andrews, M.: 1981, ‘Matching Conditions on Wave Functions at Discontinuities of the Potential’, Am J. Phys. 49, 281–282.ADSCrossRefGoogle Scholar
  2. Ballentine, L. E.: 1972, ‘Einstein’s Interpretation of Quantum Mechanics’, Am. J. Phys. 40, 1763–1771.ADSCrossRefGoogle Scholar
  3. Beam, J. E.: 1970, ‘Multiple Reflection in Potential–Barrier Scattering’, Am. J. Phys. 38, 1395–1401.ADSCrossRefGoogle Scholar
  4. Benioff, P.: 1978, ‘A Note on the Everett Interpretation of Quantum Mechanics’, Found. Phys. 8, 709–720.MathSciNetADSCrossRefGoogle Scholar
  5. Bohm, D. J., and Hiley, B. J.: 1975, ‘On the Intuitive Understanding of Nonlocality as Implied by Quantum Theory’, Found. Phys. 5, 93–109.ADSCrossRefGoogle Scholar
  6. Branson, D.: 1979, ‘Continuity Conditions on Schrödinger Wave Functions at Discontinuities of the Potential’, Am. J. Phys. 47, 1000–1003.ADSCrossRefGoogle Scholar
  7. Christoudouleas, N. D.: 1975, ‘Particles, Waves, and the Interpretation of Quantum Mechanics’, J. Chem. Educ. 52, 573–575.CrossRefGoogle Scholar
  8. Corben, H. C.: 1979, ‘Another Look Through the Heisenberg Microscope’, Am. J. Phys. 47, 1036–1037.ADSCrossRefGoogle Scholar
  9. Cummings, F. E.: 1977, ‘The Particle in a Box is Not Simple’, Am. J. Phys. 45, 158–160.ADSCrossRefGoogle Scholar
  10. Draper, J. E.: 1979, ‘Use of lΨl2 and Flux to Simplify Analysis of Transmission past Rectangular Barriers or Wells’, Am. J. Phys. 47,525–530.ADSCrossRefGoogle Scholar
  11. Draper, J. E.: 1980, ‘Quantal Tunneling through a Rectangular Barrier Using lΨl2 and Flux’, Am. J. Phys. 48,749–751.ADSCrossRefGoogle Scholar
  12. El’yashevich, M. A.: 1977, ‘From the Origin of Quantum Concepts to the Establishment of Quantum Mechanics’, Soviet Phys. Uspekhi 20,656–682.ADSCrossRefGoogle Scholar
  13. Freundlich, Y.: 1977, ‘Two Views of an Objective Quantum Theory’, Found. Phys. 7,279–300.ADSCrossRefGoogle Scholar
  14. Goodman, M.: 1981, ‘Path Integral Solution to the Infinite Square Well’, Am. J. Phys. 49,843–847.ADSCrossRefGoogle Scholar
  15. Heisenberg, W.: 1975, ‘Development of Concepts in the History of Quantum Theory’, Am. J. Phys. 43,389–394.ADSCrossRefGoogle Scholar
  16. Johnson, E. A., and Williams, H. T.: 1982, ‘Quantum Solutions for a Symmetric Double Square Well’, Am. J. Phys. 50,239–243.ADSCrossRefGoogle Scholar
  17. Jönsson, C. (translated by Brandt, D., and Hirschi, S.): 1974, ‘Electron Diffraction at Multiple Slits’, Am. J. Phys. 42,4–11.CrossRefGoogle Scholar
  18. Kiang, D.: 1974, ‘Multiple Scattering by a Dirac Comb’, Am. J. Phys. 42,785–787.ADSCrossRefGoogle Scholar
  19. Levy–Leblond, J.–M.: 1981, ‘Classical Apples and Quantum Potatoes’, Eur. J. Phys. 2,44–47.CrossRefGoogle Scholar
  20. MacKinnon, E.: 1976, ‘De Broglie’s Thesis: A Critical Retrospective’, Am. J. Phys. 44,1047–1055.ADSCrossRefGoogle Scholar
  21. Maxwell, N.: 1982, ‘Instead of Particles and Fields: A Micro Realistic Quantum “Smearon”’ Found. Phys. 12, 607–631.ADSCrossRefGoogle Scholar
  22. Mermin, N. D.: 1981, ‘Bringing Home the Atomic World: Quantum Mysteries for Anybody’, Am. J. Phys. 49,940–943.ADSCrossRefGoogle Scholar
  23. Newton, R. G.: 1980, ‘Probability Interpretation of Quantum Mechanics’, Am. J. Phys. 48,1029–1034.ADSCrossRefGoogle Scholar
  24. Patsakos, G.: 1976, ‘Classical Particles in Quantum Mechanics’, Am. J. Phys. 44,158–165.ADSCrossRefGoogle Scholar
  25. Peres, A.: 1975, ‘A Single System Has No State’, Am. J. Phys. 43,1015–1016.ADSCrossRefGoogle Scholar
  26. Peres, A.: 1979, ‘Proposed Test for Complex versus Quaternion Quantum Theory’,Phys. Rev. Letters 42,683–686.ADSCrossRefGoogle Scholar
  27. Powell, R. A.: 1978, ‘Photoelectric Effect: Back to Basics’, Am. J. Phys. 46,1046–1051.ADSCrossRefGoogle Scholar
  28. Rogers, D. W.: 1972, ‘Symmetry and Degeneracy: The Particle in a “Squeezed Box”’, J. Chem. Educ. 49,501–502.CrossRefGoogle Scholar
  29. Schreiber, H. D., and Spencer, J. N.: 1971, ‘Contour Functions for the Particle in a 3–D Box’, J. Chem. Educ. 48,185–187.CrossRefGoogle Scholar
  30. Stapp, H. P.: 1972, ‘The Copenhagen Interpretation’, Am. J. Phys. 40,1098–1116.ADSCrossRefGoogle Scholar
  31. Wigner, E. P.: 1971, ‘Rejoinder’, Am. J. Phys. 39,1097–1098.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • George H. Duffey
    • 1
  1. 1.Department of PhysicsSouth Dakota State UniversityUSA

Personalised recommendations