Skip to main content

The Role of Microfloral and Faunal Interactions in Affecting Soil Processes

  • Chapter
Microfloral and faunal interactions in natural and agro-ecosystems

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 3))

Overview

Soils and the organisms within them are an integral part of the detritus-decomposition and nutrient-cycling that enables ecosystems to function. The physical, chemical and biotic regimes both buffer and constrain the ongoing nutrient transformations. Using conceptual models and laboratory experiments, a considerable amount of information has been gained about interactions between primary decomposers (bacteria and fungi) and the fauna that feed on them or are predatory on the microbivores. Both bacterial feeders (protozoa and nematodes) and fungal feeders (nematodes) in microcosm experiments showed considerable facilitation of nutrient (nitrogen) return, leading to enhanced nutrient uptake and dry matter yield of test plants.

The trophic interactions mentioned above have been (and are being) tested, using selective biocides in natural ecosystems. The studies are in their early stages and require more investigation.

Recent experiments in agroecosystems are attempting to elucidate how the basic mechanisms of trophic interactions are modified or altered in zero-tillage versus conventional tillage regimes in various crops (such as dryland wheat, soybeans, and corn).

With the existence of many microbivorous forms with high production efficiency, one might expect longer food chains than the classical 4- or 5-membered ones. This, combined with demonstrated feeding effects on symbiotic (mycorrhizal) fungi, means there is much further work needed on microbial/faunal interactions in ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, B., and M. J. Mitchell. 1980. Role of nematode-bacterial interactions in heterotrophic systems with emphasis on sewage sludge decomposition. Oikos 35: 404 – 410.

    Article  Google Scholar 

  2. Anderson, D. W. 1979. Processes of humus formation and transformation in soils of the Canadian Great Plains. J. Soil Sci. 30: 77 – 84.

    Article  CAS  Google Scholar 

  3. Anderson, R. V., E. T. Elliott, J. F. McClellan, D. C. Coleman, C. V. Cole, and H. W. Hunt. 1978. Trophic interactions in soil as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae and nematodes. Microb. Ecol. 4: 361 – 371.

    Article  Google Scholar 

  4. Anderson, R. V., D. C. Coleman, C. V. Cole, E. T. Elliott, and J. F. McClellan. 1979. The use of soil microcosms in evaluating bacteriophagic nematode responses to other organisms and effects on nutrient cycling. Int. J. Environ. Stud. 13: 175 – 182.

    Article  Google Scholar 

  5. Anderson, R. V., D. C. Coleman, and C. V. Cole. 1981. Effects of saprotrophic grazing on net mineralization. In F. E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33: 201 – 216.

    Google Scholar 

  6. Anderson, R. V., D. C. Coleman, C. V. Cole, and E. T. Elliott. Effect of the nematodesAcrobeloides sp. andMesodiplogaster lheritieri on substrate utilization and nitrogen and phosphorus mineralization in soil. Ecology 62:549–555.

    Google Scholar 

  7. Bååth, E., U. Lohm, B. Lundgren, T. Rosswall, B. Söderström, B. Sohlenius, and A. Wiren. 1978. The effect of nitrogen and carbon supply on the development of soil organism populations and pine seedlings: A microcosm study. Oikos 31: 153 – 163.

    Article  Google Scholar 

  8. Bååth, E., U. Lohm, B. Lundgren, T. Rosswall, B. Söderström, and B. Sohlenius. 1981. Impact of microbial-feeding animals on total soil activity and nitrogen dynamics: a soil microcosm experiment. Oikos 37: 257 – 264.

    Article  Google Scholar 

  9. Bennett, R. A., and J. M. Lynch. 1981. Bacterial growth and development in the rhizosphere of gnotobiotic cereal plants. J. Gen. Microbiol. 125: 95 – 102.

    Google Scholar 

  10. Berkeley, R. C. W., J. M. Lynch, J. Melling, P. R. Butter, and B. Vincent. 1980. Microbial Adhesion to Surfaces. John Wiley and Sons, New York.

    Google Scholar 

  11. Bitton, G., and K. C. Marshall. 1980. Adsorption of Microorganisms to Surfaces. John Wiley and Sons, New York.

    Google Scholar 

  12. Brady, N. C. 1978. The Nature and Properties of Soil. Macmillan, New York.

    Google Scholar 

  13. Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Ann. Rev. Microbiol. 36: 323 – 343.

    Article  CAS  Google Scholar 

  14. Clarholm, M. 1981. Protozoan grazing of bacteria in soil. Microb. Ecol.7: 343 – 350.

    Google Scholar 

  15. Clarholm, M., and T. Kosswall. 1980. Biomass and turnover of bacteria in a forest soil and a peat. Soil Biol. Biochem. 12: 49 – 57.

    Article  Google Scholar 

  16. Cole, C. V., E. T. Elliott, H. W. Hunt, and D. C. Coleman. 1978. Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorus transformations. Microb. Ecol. 4: 381 – 387.

    Article  CAS  Google Scholar 

  17. Coleman, D. C. 1976. A review of root production processes and their influence on soil biota in terrestrial ecosystems. Pages 417–434inJ. M. Anderson and A. Macfadyen, editors. The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford.

    Google Scholar 

  18. Coleman, D. C. 1983. The impacts of acid deposition on soil biota and C cycling. Environ. Exp. Bot. 23: 225 – 233.

    Article  CAS  Google Scholar 

  19. Coleman, D. C., R. V. Anderson, C. V. Cole, E. T. Elliott, L. Woods, and M. K. Campion. 1978. Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Microb. Ecol. 4: 373 – 380.

    Article  CAS  Google Scholar 

  20. Coleman, D. C., C. P. P. Reid, and C. V. Cole. 1983. Biological strategies of nutrient cycling in soil systems. Adv. Ecol. Res. 13: 1 – 55.

    Article  Google Scholar 

  21. Cutler, D. W., L. M. Crump, and J. Sandon. 1922. A quantitative investigation of the bacterial and protozoan population of the soil. Phil. Trans. R. Soc. Lond. (B) Biol. Sci. 211: 317 – 350.

    Google Scholar 

  22. Darbyshire, J. F. 1976. Effects of water suctions on the growth in soil of the ciliateColpoda steiniiand the bacteriumAzotobacter chrococcum. J. Soil Sci. 27: 369 – 376.

    Article  Google Scholar 

  23. Darwin, C. 1837. On the formation of mould. Trans. Geol. Soc. London 3: 505 – 510.

    Google Scholar 

  24. Darwin, C. 1881. The formation of vegetable mould through the action of worms, with observations on their habits. John Murray, London.

    Google Scholar 

  25. DeAngelis, D. L. 1980. Energy flow, nutrient cycling and ecosystem resilience. Ecology 61: 764 – 771.

    Article  Google Scholar 

  26. Demeure, Y., D. W. Freckman, and S. D. Van Gundy. 1979. Nahydrobiotic coiling of nematodes in soil. J. Nematol. 11: 189 – 195.

    PubMed  CAS  Google Scholar 

  27. de Soyza, K. 1973. Energetics ofAphelenchus avenaein monoxenic culture. Proc. Helmith. Soc. Wash. 40: 1 – 10.

    Google Scholar 

  28. Doran, J. W. 1980a. Microbial changes associated with residue management with reduced tillage. Soil Sci. Soc. Am. J. 44: 518 – 524.

    Article  CAS  Google Scholar 

  29. Doran, J. W. 1980b. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 44: 765 – 771.

    Article  CAS  Google Scholar 

  30. Dyer, M. I., J. K. Detling, D. C. Coleman, and D. W. Hilbert. 1982. The role of herbivores in grasslands. Chapter 10 (pp. 255–295)inJ. R. Estes, R. J. Tyrl, and J. N. Brunken, editors. Grasses and grasslands: Systematics and ecology. Univ. Oklahoma Press, Norman.

    Google Scholar 

  31. Edwards, C. A., and J. R. Lofty. 1978. The biology of earthworms. 2nd edn. Chapman & Hall, London.

    Google Scholar 

  32. Elliott, E. T., D. C. Coleman, and C. V. Cole. 1979. The influence of amoebae on the uptake of nitrogen by plants in gnotobiotic soil. Pages 223-229inJ. L. Harley and R. S. Russell, editors. The soil-root interface. Academic Press, London.

    Google Scholar 

  33. Elliott, E. T., R. V. Anderson, D. C. Coleman, and C. V. Cole. 1980a. Habitable pore space and microbial trophic interactions. Oikos 35: 327 – 335.

    Article  Google Scholar 

  34. Elliott, E. T., D. C. Coleman, R. V. Anderson, C. V. Cole, H. W. Hunt, L. E. Woods, W. D. Gould, and J. F. McClellan. 1980b. Microbial trophic structure and habitable pore space in soil. Microcosms in Ecological Research, Symposium Series, 52: 1050 – 1070.

    Google Scholar 

  35. Fenster, C. R., and G. A. Peterson. 1979. Effects of no-tillage fallow as compared to conventional tillage in a wheat-fallow system. Res. Bull. 289, Agric. Exp. Sta., Inst. Agric. Natur. Res., Univ. Nebraska, Lincoln.

    Google Scholar 

  36. Greenland, D. J. 1981. Soil management and soil degradation. J. Soil Sci. 32: 302 – 322.

    Google Scholar 

  37. Haska, G. 1981. Activity of bacteriolytic enzymes adsorbed to clays. Microb. Ecol. 7: 331 – 341.

    Article  Google Scholar 

  38. Hunt, H. W., and W. J. Parton. 1984. The role of mathematical models in research on microfloral and faunal interactions in natural- and agroecosystems. Chapter 12in M. J. Mitchell, editor. Microfloral and faunal interactions in natural and agro-ecosystems.

    Google Scholar 

  39. Hussey, R. S., and R. W. Roncadori. Influence ofAphelenchus avenae on vesicular-arbuscular endomycorrhizal growth response in cotton. J. Nematol. 13:48–52.

    Google Scholar 

  40. Ingham, E. R., R. N. Ames, C. R. Morley, J. C. Moore, and D. C. Coleman. 1983. Field soil microbial and faunal population removal and effects on non-target soil populations and nutrient cycling by streptomycin, captan, carbofuran, PCNB, and cygon in a semi-arid grassland. Proc. 3rd Int. Sym. Microb. Ecol., East Lansing, Mich.

    Google Scholar 

  41. Ingham, R. E., J. A. Trofymow, R. V. Anderson, and D. C. Coleman. 1982. Relationships between soil type and soil nematodes in a shortgrass prairie. Pedobiologia 24:139–144.

    Google Scholar 

  42. Ingham, R. E., J. A. Trofymow, E. R. Ingham, and D. C. Coleman. 1984. Interactions of bacteria, fungi, and their nematode grazers and effects on nutrient cycling and plant growth. Ecol. Monogr. (in press).

    Google Scholar 

  43. Jenny, H. 1941. Factors of soil formation. McGrawHill, New York.

    Google Scholar 

  44. Jones, F. G. W., and A. J. Thomasson. 1976. Bulk density as an indicator of pore space in soils usable by nematodes. Nematologica 22: 133 – 137.

    Article  Google Scholar 

  45. Jongerius, A. (ed.). 1964. Soil micromorphology. Elsevier, Amsterdam and New York.

    Google Scholar 

  46. Kirchman, D., and R. Mitchell. 1982. Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. Environ. Microbiol. 43: 200 – 209.

    PubMed  CAS  Google Scholar 

  47. Kubiëna, W. L. 1938. Micropedology. Collegiate Press, Ames, Iowa.

    Google Scholar 

  48. Kubiëna, W. L. 1970. Micromorphological features of soil geography. Rutgers Univ. Press, New Brunswick, New Jersey.

    Google Scholar 

  49. Luxton, M. 1982. 7. Quantitative utilization of energy by the soil fauna. Oikos 39:342–354.

    Google Scholar 

  50. Marshall, K. C. 1976. Interfaces in microbial ecology. Harvard University Press, Cambridge.

    Google Scholar 

  51. Melin, E., and H. Nilsson. 1952. Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Sven. Bot. Tidskr. 46: 281 – 285.

    CAS  Google Scholar 

  52. Mitchell, M. J. Chapter 1, this volume.

    Google Scholar 

  53. Moore, J. C., R. J. Snider, and L. S. Robertson. Effects of different management practices on Collembola and Acarina in corn production systems. I. The effects of no-tillage and atrazine. Pedobiologia (in press).

    Google Scholar 

  54. Newman, R. H., and K. R. Tate. 1980. Soil phosphorus characterization by 31P nuclear magnetic resonance. Commun. Soil Sci. Plant Anal. 11: 835 – 842.

    Article  CAS  Google Scholar 

  55. Odum, E. P. 1971. Fundamentals of ecology, 3rd ed. Saunders, Philadelphia.

    Google Scholar 

  56. Odum, E. P. 1983. Fundamentals of ecology, 4th ed. Saunders, Philadelphia.

    Google Scholar 

  57. Parkinson, D., S. Visser, and J. Whittaker. 1979. Effects of collembolan grazing on fungal colonization of leaf litter. Soil. Biol. Biochem. 11: 529 – 536.

    Article  Google Scholar 

  58. Parr, J. F., and R. I. Papendick. 1978. Factors affecting the decomposition of crop residues by microorganisms. Chapter 6, pp. 101–129inW. R. Oschwald, editor. Crop residue management systems. Am. Soc. Agron. Spec. Pub. No. 31. American Society of Agronomy, Madison, Wis.

    Google Scholar 

  59. Persson, T., E. Bååth, M. Clarholm, H. Lundkvist, B. H. Söderström, and B. Sohlenius. 1980.In T. Persson, editor. Structure and function of Northern Coniferous forests—an ecosystem study. Ecol. Bull. (Stockholm) 32:419–459.

    Google Scholar 

  60. Petersen, H. 1982. The total soil fauna biomass and its composition. Oikos 39: 330 – 339.

    Google Scholar 

  61. Phillips, R. E., R. L. Blevins, G. W. Thomas, W. W. Frye, and S. H. Phillips. 1980. No-tillage agriculture. Science 208: 1108 – 1113.

    Article  PubMed  CAS  Google Scholar 

  62. Piearce, T. G., and M. J. Phillips 1980. The fate of ciliates in the earthworm gut: Anin vitrostudy. Microb. Ecol. 5: 313 – 319.

    Article  Google Scholar 

  63. Pimm, S. L. 1982. Food webs. Chapman and Hall, New York and London.

    Google Scholar 

  64. Pomeroy, L. R. 1970. The strategy of mineral cycling in ecosystems. Annu. Rev. Ecol. Syst.1: 171 – 190.

    Article  Google Scholar 

  65. Riffle, J. 1975. TwoAphelenchoidesspecies suppress formation ofSuillus granulatusectomycorrhizae withPinus ponderosa seedlings. Plant Dis. Rep. 59: 951 – 955.

    Google Scholar 

  66. Rogerson, A. 1981. The ecological energetics ofAmoeba proteus(Protozoa). Hydrobiologia 85: 117 – 128.

    Article  Google Scholar 

  67. Rovira, A. D., R. C. Foster, and J. K. Martin 1979. Note on terminology: Origin, nature, and nomenclature of the organic materials in the rhizosphere. Pages 1-4inJ. L. Harley and R. S. Russell, editors. The soilroot interface. Academic Press, London.

    Google Scholar 

  68. Santos, P. F., and W. G. Whitford 1981. The effects of microarthropods in litter decomposition in a Chihuahuan desert ecosystem. Ecology 62: 664 – 669.

    Article  Google Scholar 

  69. Santos, P. F., J. Phillips, and W. G. Whitford 1981. The role of mites and nematodes in early stages of buried litter decomposition in a desert. Ecology 62: 654 – 663.

    Article  Google Scholar 

  70. Seastedt, T. R. 1984. The role of microarthropods in decomposition and mineralization processes. Ann. Rev. Entomol. 29: 25 – 46.

    Article  Google Scholar 

  71. Sharpley, A. N., J. K. Syers and J. A. Springett. 1979. Effects of surface-casting earthworms on the transport of phosphorus and nitrogen in surface runoff from pasture. Soil Biol. Biochem. 11: 459 – 462.

    Article  CAS  Google Scholar 

  72. Sohlenius, B. 1980. Abundance, biomass, and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34: 186 - 194.

    Article  Google Scholar 

  73. Standen, V. 1978. The influence of soil fauna on decomposition by micro-organisms in blanket bog litter. J. Anim. Ecol. 47: 25 – 38.

    Article  Google Scholar 

  74. Stanford, G., and S. J. Smith 1976. Estimating potentially mineralizable soil nitrogen from a chemical index of soil nitrogen availability. Soil Sci. 122: 71 – 76.

    Article  CAS  Google Scholar 

  75. Stewart, J. W. B., and R. B. McKercher 1982. Phosphorus cycle. Pages 221–238inR. G. Burns and J. H. Slater, editors. Experimental microbial ecology. Blackwells, Oxford.

    Google Scholar 

  76. Stinner, B. R., and D. A. Crossley, Jr. 1980. Comparison of mineral element cycling under till and no-till practices: An experimental approach to agroecosystem analysis. Pages 280-288inD. Dindal, editor. Soil biology as related to land use practices. U.S. EPA, Washington, D. C.

    Google Scholar 

  77. Stout, J. D., and O. W. Heal. 1967. Protozoa. Pages 149–211inA. Burges and F. Raw, editors. Soil biology. Academic Press, New York.

    Google Scholar 

  78. Stout, J. D. 1980. The role of protozoa in nutrient cycling and energy flow. Adv. Microb. Ecol. 4: 1 – 50.

    Google Scholar 

  79. Syers, J. K., A. N. Sharpley, and D. R. Kenney. 1979. Cycling of nitrogen by surface-casting earthworms in a pasture ecosystem. Soil Biol. Biochem. 11: 181 – 185.

    Article  CAS  Google Scholar 

  80. Tate, K. R., and R. H. Newman 1982. Phosphorus fractions of a climosequence of soils in New Zealand tussock grasslands. Soil Biol. Biochem. 14: 191 – 196.

    Article  CAS  Google Scholar 

  81. Thomas, J. O. M. 1979. An energy budget for a woodland population of oribatid mites. Pedobiologia 19: 346 – 378.

    Google Scholar 

  82. Tisdall, J. M., and J. M. Oades. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33: 141 – 163.

    Article  CAS  Google Scholar 

  83. Trofymow, J. A., and D. C. Coleman. 1982. The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition in the context of a root/rhizosphere/soil conceptual model. Pages 117–138inD. Freckman, editor. Nematodes in soil ecosystems. University of Texas Press, Austin.

    Google Scholar 

  84. Ulehlova, B. 1980. Contents, accumulation and release of energy in free, dead and decomposing plant materials in an upland grassland near Kamenicky, Czechoslovakia. Folia Microbiol. 25: 162 – 167.

    Article  CAS  Google Scholar 

  85. Usher, M. B., R. G. Booth, and K. E. Sparkes. 1982. A review of progress in understanding the organization of communities of soil arthropods. Pedobiologia 23: 126 – 144.

    Google Scholar 

  86. van Vuurde, J. W. L., and B. Schippers. 1980. Bacterial colonization of seminal wheat roots. Soil Biol. Biochem. 12: 559 – 565.

    Article  Google Scholar 

  87. Vossbrinck, C. R., D. C. Coleman, and T. A. Woolley. 1979. Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology 60: 265 – 271.

    Article  CAS  Google Scholar 

  88. Walker, T. W. 1965. The significance of phosphorus in pedogenesis. Pages 195–316inE. G. Hallsworth and D. V. Crawford (editors). J. Exp. Ped. Butterworth, London.

    Google Scholar 

  89. Wallace, H. R. 1971. The movement of nematodes in the external environment. Pages 201–212inA. M. Fallis, editor. Ecology and Physiology of Parasites. University of Toronto Press, Toronto, Canada.

    Google Scholar 

  90. Warnock, A. J., A. H. Fitter, and M. B. Usher. 1982. The influence of a springtailFolsomia candida(Insecta, Collembola) on the mycorrhizal association of leekAllium porrumand the vesicular-arbuscular mycorrhizal endophyteGlomus fasciculatus. New Phytol. 90: 285 – 292.

    Article  Google Scholar 

  91. Wasilewska, L., H. Jakubczyk, and E. Paplinska. 1975. Production ofAphelenchus avenaeBastian (Nematoda) and reduction of mycelium of saprophytic fungi by them. Pol. Ecol. Stud. 1: 61 – 73.

    Google Scholar 

  92. Whitford, W. G., D. W. Freckman, P. F. Santos, N. Z. Elkins, and L. W. Parker. 1982. The role of nematodes in decomposition in desert ecosystems. Pages 98–116inD. W. Freckman, editor. Nematodes in soil ecosystems. Univ. Texas Press, Austin.

    Google Scholar 

  93. Wilkinson, H. T., R. D. Miller, and R. L. Millar. 1981. Infiltration of fungal and bacterial propagules into soil. Soil Sci. Soc. Am. J.45: 1034 – 1039.

    Article  Google Scholar 

  94. Wimpenny, J. W. T. 1981. Spatial order in microbial ecosystems. Biol. Rev. 56: 295 – 342.

    Article  CAS  Google Scholar 

  95. Yeates, G. W. 1981. Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22: 191 – 195.

    Google Scholar 

  96. Yeates, G. W., and D. C. Coleman. 1982. Nematodes and decomposition. Pages 55–80inD. Freckman, editor. Nematodes in soil ecosystems. Univ. Texas Press, Austin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Coleman, D.C. (1986). The Role of Microfloral and Faunal Interactions in Affecting Soil Processes. In: Mitchell, M.J., Nakas, J.P. (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Developments in Biogeochemistry, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5173-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5173-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8789-6

  • Online ISBN: 978-94-009-5173-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics