Skip to main content

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 3))

Abstract

Ecosystem research is in its infancy, its roots are varied, it has a reasonable theoretical basis but it lacks the extensive data so essential for the development of the subject. The very complexity and scale of ecosystems makes analysis and comprehension difficult. However, the stimulus for research lies in the recognition that the ecosystem is a level of organization at which many organisms and processes interact. It is a unit which man manages for agriculture and forestry, and the flow of energy, carbon and nutrients provides a common currency for comparison of components and ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D., Botkin, D.B., and Melillo, J.M. 1979. Predicting the effects of different harvesting regimes on productivity and yield in northern hardwoods. Can. J. For. Res.9: 10–14.

    Google Scholar 

  2. Addison, J.A., and Parkinson, D. 1978. Influence of collembolan feeding activities on soil metabolism at a high arctic site. Oikos30: 529–538.

    Google Scholar 

  3. Alexander, I.J. 1983. The significance of ectomycorrhizas in the nitrogen cycle. Pages 69–73 in J.A. Lee, S. McNeill and I.H. Rorison, editors. Nitrogen as an ecological factor. Blackwell, Oxford, UK.

    Google Scholar 

  4. Anderson, J.M. 1975. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J. Anim. Ecol.44: 475–495.

    Google Scholar 

  5. Anderson, J.M. and Ineson, P. 1982. A soil microcosm system and its application to measurements of respiration and nutrient leaching. Soil Biol. Biochem.14: 415–416.

    Google Scholar 

  6. Anderson, J.M., and Ineson, P. 1983. Interactions between soil arthropods and microorganisms in carbon, nitrogen and mineral element fluxes in decomposing leaf litter. Pages 413–432.inJ.A. Lee, S. McNeill and I.H. Rorison, editors. Nitrogen as an ecological factor. Blackwell, Oxford, UK.

    Google Scholar 

  7. Anderson, J.M. and Swift, M.J. 1983. Decomposition in tropical forests. Pages 287–309inS.L. Sutton, T.C. Whitmore and A.C. Chadwick, editors. Tropical rain forest: ecology and management. Blackwell, Oxford, UK.

    Google Scholar 

  8. Anderson, R.V., Coleman, D.C., and Cole, C.V. 1981. Effects of saprotrophic grazing on net mineralization. Pages 201–216in F.E. Clark and T. Roswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm)33.

    Google Scholar 

  9. Ausmus, B.S. 1977. Regulation of wood decomposition rates by arthropod and annelid populations. Pages 180–192in U. Lohm and T. Persson, editors. Soil organisms as components of ecosystems. Ecol. Bull. (Stockholm)25.

    Google Scholar 

  10. Ausmus, B.S., Edwards, N.T., and Witkamp, M. 1976. Microbial immobilization of carbon, nitrogen phosphorus and potassium: implications for forest ecosystem processes. Pages 397–416inJ.M. Anderson and A. Mcfadyen, editors. The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, Oxford, UK.

    Google Scholar 

  11. Baath, E., Lohm, U., Lundgren, B., Rosswall, T., Soderstrom, B., Sohlenius, B., and Wiren, A. 1978. The effect of nitrogen and carbon supply on the development of soil organism populations and pine seedlings: A microcosm experiment. Oikos31: 153–163.

    Google Scholar 

  12. Bache, B.W. 1980. The acidification of soils. Pages 375–380inT.C. Hutchinson and M. Havas, editors. Effects of acid precipitation on terrestrial ecosystems. Plenum, New York, USA.

    Google Scholar 

  13. Berg, B . 1984, in press. Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biol. Biochem

    Google Scholar 

  14. Berg, B., and Staff, H. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Pages 163–178in F.E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm)33.

    Google Scholar 

  15. Blackburn, T.R. 1973. Information and the ecology of scholars. Science181: 1141–1146.

    PubMed  CAS  Google Scholar 

  16. . Block, W. 1980. Survival strategies in polar terrestrial arthropods. Biol. J. Linn. Soc.14: 29–38.

    Google Scholar 

  17. Borman, F.H., and Likens, G.E. 1979. Pattern and process in a forested ecosystem: disturbance, development and the steady state. Springer-Verlag, New York, USA.

    Google Scholar 

  18. Bosatta, E. 1981. A qualitative analysis of the root-microorganism soil system. II. Combined effect of several factors. Ecol. Mod.13: 237–245.

    CAS  Google Scholar 

  19. Bosatta, E. and Staff, H. 1982. The control of nitrogen turnover in forest litter. Oikos39: 143–151.

    CAS  Google Scholar 

  20. Bosatta, E., Bringmark, L., and Staaf, H. 1980. Nitrogen formation in a Scots pine forest-model analysis of mineralization, uptake by roots and leaching. Pages 565–589in T. Persson, editor. Structure and function of northern coniferous forests–an ecosystem study. Ecol. Bull. (Stockholm)32.

    Google Scholar 

  21. Breznak, J.A. 1982. Intestinal microbiota of termites and other xylophagous insects. Ann. Rev. Microbiol.36: 323–343.

    CAS  Google Scholar 

  22. Bringmark, L. 1980. Ion leaching through a podsol in a Scots pine stand. Pages 341–361inT. Persson, editor. Structure and function of northern coniferous forests–an ecosystem study. Ecol. Bull. (Stockholm)32: 25.

    Google Scholar 

  23. Brown, J., Miller, P.C., Tieszen, L.L., and Bunnell, F.L. 1980. An Arctic ecosystem: The coastal tundra at Barrow, Alaska. Dowden, Hutchinson and Ross, Stroudsburg, USA.

    Google Scholar 

  24. Bunnell, F.L., and Scouller, K.A. 1981. Between-site comparisons of carbon flux in tundra using simulation models. Pages 685–715inL.C. Bliss, O.W. Heal and J.J. Moore, editors. Tundra ecosystems: a comparative analysis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  25. Caporali, P., Nannjipieri, P., and Pedrazzini, F. 1981. Nitrogen content of streams draining an agricultural and a forested watershed in central Italy. J. Environ. Qual.10: 72–76.

    CAS  Google Scholar 

  26. Carlisle, A., Brown, A.H.F., and White, E.J. 1966. Litter fall, leaf production and the effects of defoliation byTortrix viridanain a sessile oak (Quercus petraea) woodland. J. Ecol.54: 65–85.

    Google Scholar 

  27. Chapin, F.S., Miller, P.C., Billings, W.D. and Coyne, P.E. 1980. Carbon and nitrogen budgets and their control in coastal tundra. Pages 458–489inJ. Brown, P.C. Miller, L.L. Tieszen and F.L. Bunnell, editors. An Arctic ecosystem: The coastal tundra at Barrow, Alaska. Dowden, Hutchinson and Ross, Stroudsburg, USA.

    Google Scholar 

  28. Chapman, S.B., and Webb, N.R. 1978. The productivity of aCallunaheathland in southern England. Pages 247–262inO.W. Heal and D.F. Perkins, editors. Production ecology of British moors and montane grasslands. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  29. Christensen, M. 1981. Species diversity and dominance in fungal communities. Pages 201–232inD.T. Wicklow and G.C. Carroll, editors. The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York, USA.

    Google Scholar 

  30. Clarholm, M. 1981. Protozoan grazing of bacteria in soil-impact and importance. Microb. Ecol.7: 343–350.

    Google Scholar 

  31. Clarholm, M. 1983. Dynamics of soil bacteria in relation to plants, protozoa and inorganic nitrogen. Institute of microbiology, Report17. Swedish Univ. Agjric. Sci. Uppsala.

    Google Scholar 

  32. Clarholm, M., and Rosswall, T. 1980. Biomass and turnover of bacteria in a forest soil and a peat. Soil Biol. Biochem.12: 49–51.

    Google Scholar 

  33. Clarke, F.E., and Rosswall, T. 1981. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm)33.

    Google Scholar 

  34. Clements, F.E. 1916. Plant succession: An analysis of the developments of vegetation. Carneigie Inst. Wash. Publ. No.242.

    Google Scholar 

  35. Clymo, R.S. 1978. A model of peat bog growth. Pages 187-223inO.W. Heal and D.F. Perkins, editors. Production ecology of British moors and montane grasslands. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  36. Cole, D.W. 1981. Nitrogen uptake and translocation by forest ecosystems. Pages 219–232in F.E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm)33.

    Google Scholar 

  37. Colemanet al. 1977. An analysis of rhizospheresaprophage interactions in terrestrial ecosystems. Pages 299-309in U. Lohm, editor. Soil organisms as components of ecosystems. Ecol. Bull. (Stockholm)25.

    Google Scholar 

  38. Collins, M. 1982. The importance of being a bugga-bug. New Scientist94: 834–837.

    Google Scholar 

  39. Cousins, S.H. 1980. A trophic continuum derived from plant structure, animal size and a detritus cascade. J. theor. Biol.82: 607–618.

    PubMed  CAS  Google Scholar 

  40. Cromack, J. 1981. Below-ground processes in forest succession. Pages 361-373inD.A. West, H.H. Shugart and D.B. Botkin, editors. Forest succession: concepts and applications. Springer-Verlag, New York, USA.

    Google Scholar 

  41. Curry, J.P. 1969. The decomposition of organic matter in soil Part II. The fauna of decaying grassland herbage. Soil Biol. Biochem.1: 259–266.

    Google Scholar 

  42. De Angelis, D.L. 1980. Energy flow, nutrient cycling and ecosystem resiliance. Ecology,61: 764–771.

    Google Scholar 

  43. De Selm, H.R., and Shanks, R.E. 1963. Accumulation and cycling of organic matter and chemical constituents during early vegetational succcession on a radioactive waste disposal area. Pages 83–96inV. Schultz and A.W. Klement, editors. Radioecology. Reinhold, New York, USA.

    Google Scholar 

  44. Dickson, B.A., and Crocker, R.L. 1953. A chronosequence of soils and vegetation near Mt. Shasta, California. II. The development of the forest floors and the carbon and nitrogen profiles of the soils. J. Soil Sci.4: 142–154.

    CAS  Google Scholar 

  45. Dickinson, C.H., and Pugh, G.J.F. 1974. Biology of plant litter decomposition. Academic Press, London, UK.

    Google Scholar 

  46. Dighton, J. 1978. Effects of synthetic lime aphid honeydew on populations of soil organisms. Soil Biol. Biochem.10: 369–376.

    Google Scholar 

  47. Dunger, Von, W. 1969. Fragen der naturlichen and experimentallen besiedlung kulturfeindlicher boden durch lumbriciden. Pedobiol.9: 146–151.

    Google Scholar 

  48. Edwards, C.A., and Lofty, J.R. 1977. Biology of earthworms. Chapman and Hall, London, UK.

    Google Scholar 

  49. Elkins, N.Z. and Whitford, W.G. 1982. The role of microarthropods and nematodes in decomposition in a semi-arid ecosystem. Oecologia (Berl)55: 303–310.

    Google Scholar 

  50. Esser, G., Aselmann, I., and Leith, H. 1982. Modelling the carbon reservoir in the system compartment “Litter”. Mitt. Geol-Palaont. Inst. Univ. Hamburg52: 39–58.

    Google Scholar 

  51. Flanagan, P.W., and Bunnell, F.L. 1980. Microflora activities and decomposition. Pages 291–334inJ. Brown, P.C. Miller, L.L. Tieszen and F.L. Bunnell, editors. An Arctic ecosystem: The coastal tundra at Barrow, Alaska, USA. Dowden, Hutchinson and Ross, Stroudsburg, USA.

    Google Scholar 

  52. Floate, M.J.S. 1970. Mineralization of nitrogen and phosphorus from organic materials of plant and animal origin and its significance in the nutrient cycle of grazed upland and hill soils. J. Br. Grass. Soc.25: 295–302.

    CAS  Google Scholar 

  53. Foster, J.R., and Lang, G.E. 1982. Decomposition of red spruce and balsam fir poles in the white mountains of New Hampshire. Can. J. For. Res.12: 617–626.

    CAS  Google Scholar 

  54. Frankland, J.C. 1981. Mechanisms in fungal successions. Pages 403–426inD.T. Wicklow and G.C. Carrol, editors. The fungal cummunity, its organization and role in the ecosystem. Marcel Dekker, New York, USA.

    Google Scholar 

  55. Frankland, J.C. 1982. Biomass and nutrient cycling by decomposer basidiomycetes. Pages 241-261inJ.C. Frankland, J.N. Hedger and M.J. Swift, Editors. Decomposer basidiomycetes: their biology and ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  56. Frissel, M.J., and Penders, R. 1983. Models for the accumulation of migration of 90Sr, 137Cs, 239,240Pu and 241Am in the upper layer of soil. Pages 63-73inP.J. Coughtrey, editor. Ecological aspects of radionuclide release. Blackwell, Oxford, UK.

    Google Scholar 

  57. Gerson, U., and Chet, I. 1981. Are allochthonous and autochthonous soil microorganisms r- and K- selected ? Rev. Ecol. Biol. Sol18: 285–289.

    Google Scholar 

  58. Gorham, E., Vitousek, P.M., and Reiners, W.A. 1979. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Ann. Rev. Ecol. Syst.10: 53–84.

    CAS  Google Scholar 

  59. Gosz, J.R. 1981. Nitrogen cycling in coniferous ecosystems. Pages 405–426in F.E. Clarke and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm)32.

    Google Scholar 

  60. Gray, T.R.G., Hissett, R., and Duxbury, T. 1974. Bacterial populations of litter and soil in a deciduous woodland. II. Numbers, biomass and growth rates. Rev. Ecol. Biol. Sol11: 15–26.

    Google Scholar 

  61. Greenslade, P.J.M. 1982. Selection processes in arid Australia. Pages 125–130inW.R. Barker and P.J.M. Greenslade, editors. Evolution of the flora and fauna of arid Australia. Peacock, South Australia.

    Google Scholar 

  62. Grime, J.P. 1979. Plant strategies and vegetation processes. Wiley, New York, USA.

    Google Scholar 

  63. Hagvar, S., and Kjondal, B.R. 1981. Succession, diversity and feeding habits of microarthropods in decomposing birch leaves. Pedobiol.22: 385–408.

    Google Scholar 

  64. Hanlon, R.D.G. and Anderson, J.M. 1979. The effects of Collembola grazing on microbial activity in decomposing leaf litter. Oecologia (Berl.)38: 93–99.

    Google Scholar 

  65. Harding, D.J.L., and Stuttard, R.A. 1974. Microarthropods. Pages 489–532inC.H. Dickinson and G.J.F. Pugh, editors. Biology of plant litter decomposition. Academic Press, London, UK.

    Google Scholar 

  66. Harris, W.F., Santantonio, D. and McGinty, D. 1980. The dynamic belowground ecosystem. Pages 119–129inR.H. Waring, editor. Forests: fresh perspectives from ecosystem analysis. Oregon State Univ. Press, Oregon, USA.

    Google Scholar 

  67. Heal, OW . 1979. Decomposition and nutrient release in even-aged plantations. Pages 257-291 in ED. Ford, DC. Malcolm and J. Atterson, editors. The ecology of even-aged forest plantations. Inst. Terr. Ecol., Cambridge, UK

    Google Scholar 

  68. Heal, O.W. and Felton, J.M. 1970. Soil amoebae: their food and their reaction to microflora exudates. Pages 145–162inA. Watson, editor. Animal populations in relation to their food resources. Blackwell, Oxford, UK.

    Google Scholar 

  69. Heal, O.W. and Felton, J.M. 1970. Soil amoebae: their food and their reaction to microflora exudates. Pages 145–162inA. Watson, editor. Animal populations in relation to their food resources. Blackwell, Oxford, UK.

    Google Scholar 

  70. Heal, O.W. and MacLean, S.F. 1975. Comparative Productivity in Ecosystems–Secondary Productivity. Pages 89-108inW.H. van Dobben, and R.H. Lowe-McConnell, editors. Unifying Concepts in ecology. Junk, Hague, Netherlands.

    Google Scholar 

  71. Heal, O.W., Latter, P.M. and Howson, G. 1978. A study of the rates of decomposition of organic matter. Pages 136–159inO.W. Heal and D.F. Perkins, editors. Production ecology of British moors and montane grasslands. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  72. Heal, O.W., Swift, M.J. and Anderson, J.M. 1982. Nitrogen cycling in United Kingdom Forests: the relevance of basic ecological research. Phil. Trans. R. Soc. Lond. B,296: 427–444.

    Google Scholar 

  73. Heal, O.W., Flanagan, P.W., French, D.D. and MacLean, S.F. 1981. Decomposition and accumulation of organic matter. Pages 587–633inL.C. Bliss, O.W. Heal and J.J. Moore, editors. Tundra ecosystems a, comparative analysis. Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  74. Heath, G.W. and Arnold, M.K. 1966. Studies in leaf-litter breakdown. IT Breakdown rate of ‘sun’ and ‘shade’ leaves. Pedobiol.6: 238–243.

    Google Scholar 

  75. Hoogerkamp, M., Rogaar, H. and Eijsackers, H.J.P. 1983. Effect of earthworms on grassland on recently reclaimed polder soils in the Netherlands. Pages 85–105inJ.E. Satchell, editor. Earthworm ecology, from Darwin to vermiculture. Chapman and Hall, London, UK.

    Google Scholar 

  76. Horn, H.S. 1981. Succession. Pages 253–271inR.M. May, editor. Theoretical ecology. Blackwell, Oxford, UK.

    Google Scholar 

  77. Hughes, R.D. and Walker, J. 1970. The role of food in the population dynamics of the Australian Bush Fly. Pages 225-270inA. Watson, editor. Animal populations in relation to their food resources. Blackwell, Oxford, UK.

    Google Scholar 

  78. Huhta, V., Ikonen, E. and Vilkamaa, P. 1979. Succession of invertebrate populations in artificial soil made of sewage sludge and crushed bark. Ann. Zool. Fennici16: 223–370.

    Google Scholar 

  79. Humphreys, W.F. 1977. Production and respiration in animal populations. J. Anim. Ecol.48: 427–453.

    Google Scholar 

  80. Jarvis, P.G. and Leverenz, J.W. 1983. Productivity of temperate, deciduous and evergreen forests. Pages 233–280inO.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler, editors. Physiological plant ecology IV. Ecosystem processes: mineral cycling, productivity and man’s influence. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  81. Jenkinson, D.S. 1971. The accumulation of organic matter in soil left uncultivated. Rothamsted Exp. Stat. Rep. 1970. 113–137.

    Google Scholar 

  82. Jenny, H. 1980. The soil resource; origin and behavior. Springer-Verlag, New York, USA.

    Google Scholar 

  83. Kaarik, A.A. 1974. Decomposition of wood. Pages 129–174inC.H. Dickinson and G.J.F. Pugh, editors. Biology of Plant Litter Decomposition. Academic Press, London, UK.

    Google Scholar 

  84. Kallio, P. and Lehtonen, J. 1973. Birch forest damage caused byOporinia autumnata(Bkh.) in 1965-66 in Utsjoki, N. Finland. Rep. Kevo Subarctic Res. Stn.10: 55–69.

    Google Scholar 

  85. Kirkwood, R.S.M. and Lawton, J.H. 1981. Efficiency of biomass transfer and the stability of model food-webs. J. theor. Biol.93: 225–237.

    Google Scholar 

  86. Kjøller, A. and Struwe, S. 1982. Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos39: 391–418.

    Google Scholar 

  87. Kozlovskaja, L.S. 1969. Der einfluss der exkremente von regenwurmern auf die aktivierung der mikrobiellen prozesse in torfboden. Pedobiol.9: 1580–164.

    Google Scholar 

  88. Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H. 1983. Physiological plant ecology IV. Ecosystem processes: mineral cycling, productivity and man’s influence. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  89. Larsson, S. and Tenow, O. 1980. Needle-eating insects and grazing dynamics in a mature Scots pine forest in Central Sweden. Pages 269–306in T. Persson, editor. Structure and function of northern coniferous forests—an ecosystem study. Ecol. Bull. (Stockholm)32.

    Google Scholar 

  90. Latter, P.M. 1977. Decomposition of a moorland litter, in relation toMarasmius androsaceusand soil fauna. Pedobiol.17: 418–427.

    Google Scholar 

  91. Leith, H. 1975. Modelling the primary production of the World. Pages 237–263inH. Leith and R.H. Whittaker, editors. Primary productivity of the biosphere. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  92. Lindeman, R.L. 1942. The trophic-dynamic aspect of ecology. Ecology23: 438–450.

    Google Scholar 

  93. Llewellyn, M.J. 1972. The effects of the lime aphid,Eucallipterus tiliaeL. (Aphididae) on the growth of the limeTiliaxvulgarisHayne. I. Energy requirements of the aphid population. J. appl. Ecol.9: 261–282.

    Google Scholar 

  94. Lousier, J.D. and Parkinson, D. 1979. Organic matter and chemical element dynamics in an aspen woodland soil. Can. J. For. Res.9: 449–463.

    CAS  Google Scholar 

  95. Luxton, M. 1972. Studies on the oribatid mites of a Danish beechwood soil. Pedobiol.12: 434–463.

    Google Scholar 

  96. MacArthur, R.H. and Wilson, E.D. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, USA.

    Google Scholar 

  97. McBrayer, J.F. 1977. Contributions of the Cryptozoa to forest nutrient cycles. Pages 70–77inJ. Matteson, editor. The Role of Arthropods in Forest Ecosystems. Springer-Verlag, New York, USA.

    Google Scholar 

  98. McClaugherty, C.A., Aber, J.D. and Melillo, J.M. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology63: 1481–1490.

    Google Scholar 

  99. McGill, W.B., Hunt, H.W., Woodmansee, R.G. and Reuss, J.O. 1981. Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils. Pages 49-115in F.E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm)33.

    Google Scholar 

  100. McIlveen, W.D. and Cole, H. Jr. 1976. Spore dispersal of Endogonaceae by worms, ants, wasps and birds. Can. J. Bot.54: 1486–1489.

    Google Scholar 

  101. MacMahon, J.A. 1981. Successional processes: comparisons among biomes with special reference to probable roles of and influences on animals. Pages 277–304inD.A. West, H.H. Shugart and D.B. Botkin, editors. Forest Succession: concepts and applications. Springer-Verlag, New York, USA.

    Google Scholar 

  102. McNeill, S. and Lawton, J.H. 1970. Animal production and respiration in animal populations. Nature, London225: 472–474.

    Google Scholar 

  103. Major, J. 1969. Historical development of the ecosystem concept. Pages 9–22inG.M. van Dyne, editor. The ecosystem concept in natural resource management. Academic Press, New York, USA.

    Google Scholar 

  104. Marrs, R.H., Roberts, R.D., Skeffington, R.A. and Bradshaw, A.D. 1983. Nitrogen and the development of ecosystems. Pages 113-136inJ.A. Lee, S. McNeill and I.H. Rorison. Nitrogen as an ecological factor. Blackwell, Oxford, UK.

    Google Scholar 

  105. Maser, C., Trappe, J.M. and Nussbaum, R.A. 1978. Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology59: 799–809.

    Google Scholar 

  106. May, R.M. 1981. Theoretical Ecology. Blackwell, Oxford, UK.

    Google Scholar 

  107. Meentemeyer, V. 1978., Macroclimate and lignin control of litter decomposition rates. Ecology59:465–472.

    Google Scholar 

  108. Mignolet, R. 1972. Etat actuel des connaissances sur les relations entre la microfaune et la microflore edaphiques. Rev. Ecol. Biol. Sol9: 655–670.

    Google Scholar 

  109. Miles, J. and Young, W.F. 1980. The effects of heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp). Bull. D’Ecol.11: 233–242.

    Google Scholar 

  110. Miller, H.G. 1981. Forest fertilization: some guiding concepts. Forestry54: 158–167.

    Google Scholar 

  111. Moran, V.C. and Southwood, T.R.E. 1982. The guild composition of arthropod communities in trees. J. Anim. Ecol.51: 289–306.

    Google Scholar 

  112. Newell, K . 1984a in press. Interactions between two decomposer basidiomycetes and a collembolan under Sitka spruce: grazing and its potential effects on fungal distribution and litter decomposition. Soil Biol. Biochem.

    Google Scholar 

  113. Newell, K . 1984b in press. Interactions between two decomposer basidiomycetes and a collembolan under Sitka spruce: distribution, abundance and selective grazing. Soil Biol. Biochem.

    Google Scholar 

  114. Nilsson, I.S., Miller, H.G. and Miller, J.D. 1982. Forest growth as a possible cause of soil and water acidification: an examination of the concepts. Oikos39: 40–49.

    Google Scholar 

  115. Noble, I. and Slatyer, R.O. 1981. Concepts and models of succession in vascular plant communities subject to recurrent fire. Pages 311–335inA.M. Gill, R.H. Groves and I.R. Noble, editors. Fire and the Australian Biota. Australian Academy of Sciences, Canberra, Australia.

    Google Scholar 

  116. Odum, E.P. 1969. The strategy of ecosystem development. Science164: 262–270.

    PubMed  CAS  Google Scholar 

  117. Odum, E.P. 1972. Ecosystem theory in relation to man. Pages 11-24inJ.A. Wiens, editor. Ecosystem structure and function. Oregon State Univ. Press, Corvallis, USA.

    Google Scholar 

  118. O’Neill, V., Harris, W.F., Ausmus, B.S. and Reichle, D.E. 1975. A theoretical basis for ecosystem analysis with particular reference to element cycling. Pages 28–40inF.G. Howell, J.B. Gentry and M.H. Smith, editors. Mineral cycling in southeastern ecosystems. U.S. Energy Res. & Dev. Admin. Symposium Series.

    Google Scholar 

  119. Owen, D.F. 1978. Why do aphids synthesize melezitose? Oikos31: 264–267.

    CAS  Google Scholar 

  120. Owen, D.F. 1980. How plants may benefit from the animals that eat them. Oikos35: 230–235.

    Google Scholar 

  121. Owen, D.F. and Weigert, R.G. 1976. Do consumers maximize plant fitness? Oikos27: 488–492.

    Google Scholar 

  122. Parkinson, D., Visser, S. and Whittaker, J.B. 1979. Effects of collembolan grazing on fungal colonization of leaf litter. Soil Biol. Biochem.11: 529–535.

    Google Scholar 

  123. Petelle, M. 1980. Aphids and melezitose: A test of Owen’s 1978 hypothesis. Oikos35: 127–128.

    Google Scholar 

  124. Petersen, H. and Luxton, M. 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos39: 287–388.

    Google Scholar 

  125. Phillipson, J. 1973. The biological efficiency of protein production by grazing and other land-based systems. Pages 217–235inJ.G.W. Jones, editor. The biological efficiency of protein production. Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  126. Pianka, E.R. 1981. Competition and niche theory. Pages 167–196inR.M. May, editor. Theoretical ecology. Blackwell, Oxford, UK.

    Google Scholar 

  127. Pugh, G.J.F. 1980. Strategies in fungal ecology. Trans. Br. mycol. Soc.75: 1–14.

    Google Scholar 

  128. Rafes, P.M. 1971. Pests and the damage which they cause to forests. Page 357-367inP. Duvigneaud, editor. Productivity of forest ecosystems. UNESCO, Paris, France.

    Google Scholar 

  129. Rai, B. and Srivastava, A.K. 1983. Decomposition and competitive colonisation of leaf litter by fungi. Soil Biol. Biochem.15: 115–117.

    Google Scholar 

  130. Raison, R.J. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformation: a review. Plant Soil5: 73–108.

    Google Scholar 

  131. Rayner, A.D.M. 1978., Interactions between fungi colonising hardwood stumps and their possible role in determining patterns of colonisation and succession. Ann. Appl. Biol.89:131–134.

    Google Scholar 

  132. Rayner, A.D.M. and Todd, N.D. 1979. Population and community structure and dynamics of fungi in decaying wood. Adv. Bot. Res.7: 333–420.

    Google Scholar 

  133. Reichle, E.D., McBrayer, J.F. and Ausmus, S. 1973. Ecological energetics of decomposer invertebrates in a deciduous forest and total respiration budget. Pages 283-392inJ. Vanek, editor. Progress in soil zoology. Academia, Prague, Czechoslovakia.

    Google Scholar 

  134. Reid, C.P.P., Kidd, F.A. and Ekwebelam, S.A. 1983. Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant Soil7: 415–432.

    Google Scholar 

  135. Reiners, W.A. 1981. Nitrogen cycling in relation to ecosystem succession. Pages 507-528inF. E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33.

    Google Scholar 

  136. Remacle, J. 1971. Succession in the oak litter microflora in forests at Mesnil-Eglise (Ferage), Belgium. Oikos22: 411–413.

    Google Scholar 

  137. Riffle, J.W. 1971. Effect of nematodes on root inhabiting fungi. Pages 97–113inE. Haeskaylo, editor. Mycorrhizae. USDA For. Serv. Mis. Publn. 1189.

    Google Scholar 

  138. Rigler, F.H. 1975. The concept of energy flow and nutrient flow between trophic levels. Pages 15–26inW.H. van Dobben and R.H. Lowe-McConnell, editors. Unifying concepts in ecology. Junk, Hague, Netherlands.

    Google Scholar 

  139. Rorison, I.H., Peterkin, J.H. and Clarkson, D.T. 1983. Nitrogen source, temperature and the growth of herbaceous plants. Pages 189-209inJ.A. Lee, S. McNeill and I.H. Rorison, editors. Nitrogen as an ecological factor. Blackwell, Oxford, UK.

    Google Scholar 

  140. Rosswall, T. and Kvillner, E. 1978. Principal-components and factor analysis for the description of microbial populations. Adv. Microb. Ecol.2: 1–8.

    Google Scholar 

  141. Rusek, J. 1978. Pedozootische sukzessionen wahrendder entwicklung von okosystemen. Pedobiol.18: 426–433.

    Google Scholar 

  142. Sanchez, P.A., Gichuru, M.P. and Katz, L.B. 1982. Organic matter in major soils of the tropical and temperate regions. 99–114. 11th Int. Cong. Soil Sci., New Delhi, India.

    Google Scholar 

  143. Satchell, J.E. 1980. r-worms and K-worms: A basis for classifying lumbricid earthworm strategies. Pages 848–864inD.L. Dindal, editor. Soil biology as related to land use practices. EPA. Washington, USA.

    Google Scholar 

  144. Satchell, J.E. and Lowe, D.G. 1967. Selection of leaf litter by Lumbricus terrestris. Pages 102–119inO. Graff and J.E. Satchell, editors. Progress in soil biology. Vieweg, Braunschweig, Germany.

    Google Scholar 

  145. Seastedt, T.R. and Crossley, D.A. Jr. 1980. Effects of microarthropods on the seasonal dynamics of nutrients in forest litter. Soil Biol. Biochem.12: 337–342.

    CAS  Google Scholar 

  146. Shafer, S.R., Rhodes, L.H. and Reidel, R.M. 1981. In-vitro parasitism of endomycorr hizal fungi of ericaceous plants by the mycophagous nematodeAphelenchoides bicaudatus. Mycologia73: 141–149.

    Google Scholar 

  147. Slatyer, R.O. 1977. Dynamic changes in terrestrial ecosystems: patterns of change, techniques for study and applications to management. UNESCO, Paris, France.

    Google Scholar 

  148. Soderstrom, B.E. 1979. Seasonal fluctuations of active fungal biomass in horizons of a podzolised pine-forest soil in central Sweden. Soil Biol. Biochem.11: 149–154.

    Google Scholar 

  149. Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies ? J. Anim. Ecol.46: 337–365.

    Google Scholar 

  150. Springett, J.A. 1976. The effect of prescribed burning on the soil fauna and litter decomposition in Western Australian forests. Aust. J. Ecol.1: 77–82

    Google Scholar 

  151. Sundman, V. 1970. Four bacterial soil populations characterised and compared by a factor analytical method. Can. J. Micro.16: 455–464.

    CAS  Google Scholar 

  152. Swank, W.T. and Waide, J.B. 1980. Interpretation of nutrient cycling research in a management context: evaluating potential effects of alternative management strategies on site productivity. Pages 137-158inR. Wareing, editor. Forests: fresh perspectives from ecosystem analysis. Oregon State Univ. Press., Corvallis, USA.

    Google Scholar 

  153. Swift, M.J. 1976. Species diversity and the structure of microbial communities in terrestrial habitats. Pages 185–222inJ.M. Anderson, and A. Macfadyen, editors. The role of terrestrial and aquatic organisms in decomposition process. Blackwell, Oxford, UK.

    Google Scholar 

  154. Swift, M.J. 1977. The roles of fungi and animals in the immobilisation and release of nutrient elements from decomposing branch wood. Pages 193–202in U. Lohm and T. Persson, editors. Soil organisms as components of ecosystems. Ecol. Bull (Stockholm)25.

    Google Scholar 

  155. Swift, J.M., Heal, O.W. and Anderson, J.M. 1979. Decomposition in terrestrial ecosystems. Blackwell, Oxford, UK.

    Google Scholar 

  156. Swift, M.J., Healey, I.N., Hibberd, J.K., Sykes, J.M., Bampoe, V. and Nesbitt, M.E. 1976. The decomposition of branch-wood in the canopy and floor of a mixed deciduous woodland. Oecologia (Berlin)26: 139–149.

    Google Scholar 

  157. Syers, J.K. and Springett, J.A. 1983. Earthworm ecology in grassland soils. Page 67–83inJ.E. Satchell, editor. Earthworm ecology, from Darwin to vermiculture. Chapman and Hall, London, UK.

    Google Scholar 

  158. Thompson, W. and Boddy, L. 1983. Decomposition of suppressed oak trees in even-aged plantations II. Colonization of tree roots by cord-and rhizomorph-producing basidiomycetes. New Phytol.93: 277–291.

    Google Scholar 

  159. Twinn, D.C. 1974. Nematodes. Pages 421–465inC.H. Dickinson and G.J.F. Pugh, editors. Biology of Plant Litter Decomposition. Academic Press, London, UK.

    Google Scholar 

  160. Ulrich, B. 1980. Production and consumption of hydrogen ions in the ecosphere. Pages 255–282inT.C. Hutchinson and M. Havas, editors. Effects of acid precipitation on terrestrial ecosystems. Plenum, New York, USA.

    Google Scholar 

  161. Usher, M.B. and Parr, T.W. 1977. Are there successional changes in arthropod decomposer communities ? J. Environ. Manag.5: 151–160.

    Google Scholar 

  162. Van Cleve, K. and Viereck, L.A. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska. Pages 185–210inD.A. West, H.H. Shugart and D.B. Botkin, editors. Forest succession: concepts and applications. Springer-Verlag, New York, USA.

    Google Scholar 

  163. Van Cleve, K., Dyrness, E. and Viereck, L. 1980. Nutrient cycling in interior Alaska flood plains and its relationship to regeneration and subsequent forest development. Pages 11–18in M. Murray and R. Van Veldhuizen, editors. Forest regeneration at high latitudes. Gen. Tech. Rep. PNW-107.

    Google Scholar 

  164. van der Drift, J. and Witkamp, M. 1959. The significance of the breakdown of oak litter byEnoicyla pusillaBurm. Arch. neerl. Zool.13: 486–492.

    Google Scholar 

  165. van Rhee, J.A. 1969. Inoculation of earthworms in a newly drained polder. Pedobiol.9: 128–132.

    Google Scholar 

  166. Van Veen, J.A, McGill, W.B., Hunt, H.W., Frissel, M.J. and Cole, D.V. 1981. Simulation models of the terrestrial nitrogen cycle. Pages 25–48in F.E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm)33.

    Google Scholar 

  167. Vitousek, P.M. 1981. Clear-cutting and the nitrogen cycle. Pages 631-642 in F. E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33.

    Google Scholar 

  168. Vitousek, P.M. and Reiners, W.A. 1975. Ecosystem succession and nutrient retention: a hypothesis. Bio. Sci. Am.25: 376–381.

    CAS  Google Scholar 

  169. Walker, J., Thompson, C.H., Fergus, I.F. and Tunstall, B.R. 1981. Plant succession and soil development in coastal sand dunes of subtropical eastern Australia. Pages 107-131inD.A. West, H.H. Shugart and D.B. Botkin, editors. Forest succession, concepts and application. Springer-Verlag, New York, USA.

    Google Scholar 

  170. Walker, T.W. and Syers, J.K. 1974. The fate of phosphorus during pedogenesis. Geoderma15: 1–19.

    Google Scholar 

  171. Wallwork, J.A. 1976. The distribution and diversity of soil fauna. Academic Press, London, UK.

    Google Scholar 

  172. Wallwork, J.A. 1982. Desert soil fauna. Praeger, New York, USA.

    Google Scholar 

  173. Warnock,A.J., Fitter, A.H. and Usher, M.B. 1982. The influence of a springtailFolsomia candida(Insecta Collembola) on the mycorrhizal association of leekAllium porrumand the vesicular-arbuscular mycorrhizal endophyteGlomus fasciculatus. New Phytol.90: 285–292.

    Google Scholar 

  174. Webster, J. 1970. Coprophilous fungi. Trans. Br. mycol. Soc.54: 161–180.

    Google Scholar 

  175. Webster, J.R., Waide, J.B. and Patten, B.C. 1975. Nutrient recycling and the stability of ecosystems. Pages 1-27inF.G. Howell, J.B. Gentry and M.H. Smith, editors. Mineral cycling in southeastern ecosystems. U.S. Energy Res. & Dev. Admin. Symp. Series.

    Google Scholar 

  176. Whitehead, D.C. 1970. The role of nitrogen in grassland productivity: a review of information for temperate regions. Comm. Bur. Past. Field Crops Bull.48. Commonwealth Agric. Bureaux, Farnham Royal, UK.

    Google Scholar 

  177. Whittaker, R.H. and Woodwell, G.M. 1972. Evolution of natural communities. Pages 137-159inJ.A. Wiens, editor. Ecosystem structure and function. Oregon State Univ., Corvallis,USA.

    Google Scholar 

  178. Winogradsky, S. 1924. Sur la microflora autochthone de la terre arable. Compt. Rend. Acad. Sci. (Paris),178: 1236–1239.

    Google Scholar 

  179. Woodmansee, R. G. and Wallach, L.S. 1981. Effects of fire regimes in biogeochemical cycles. Pages 649-669inF. E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull (Stockholm) 33.

    Google Scholar 

  180. Woods, L., Cole, C.V., Elliott, E.T., Anderson, R.V. and Coleman, D.C. 1982. Nitrogen transformation in soil as affected by bacterial-microfaunal interactions. Soil Biol. Biochem.14: 93–98.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Heal, O.W., Dighton, J. (1986). Nutrient Cycling and Decomposition in Natural Terrestrial Ecosystems. In: Mitchell, M.J., Nakas, J.P. (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Developments in Biogeochemistry, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5173-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5173-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8789-6

  • Online ISBN: 978-94-009-5173-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics