Skip to main content

The Role of Modeling in Research on Microfloral and Faunal Interactions in Natural and Agroecosystems

  • Chapter

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 3))

Abstract

A variety of mathematical tools can be applied to constructing models in biology. The distinction between correlative and explanatory models (Gold 1977) is more important for our purposes than the particular mathematical tool employed. Explanatory models are structured to be analogous to the real system under study and thus to embody hypotheses about how the real system operates. The structure of correlative models--regression models, for example—is not constrained by what is known about mechanisms operating in the real system. Both correlative and explanatory models are expected to yield realistic predictions. Although both types of models are needed in basic research, we restrict our attention largely to explanatory models because they are especially useful as an aid to understanding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. W. 1979. Processes of humus formation and transformation in soils of the Canadian Great Plains. J. Soil. Sci. 30: 77 – 84.

    Article  CAS  Google Scholar 

  2. Anderson, R. V., E. T. Elliott, J. F. McClellan, D. C. Coleman, C. V. Cole and H. W. Hunt. 1978. Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes. Microb. Ecol. 4: 361 – 371.

    Article  Google Scholar 

  3. Ares, J. 1976. Dynamics of the root system of blue grama. J. Range Manage. 29: 208 – 213.

    Article  Google Scholar 

  4. Bachelet, D . 1983. Simulation of carbon and nitrogen distribution and utilization in blue grama to represent various kinds of herbivory and their effect on plant processes. Ph.D. dissertation. Colorado State University, Fort Collins.

    Google Scholar 

  5. Bachelet, D., H. W. Hunt, J. K. Detling, and D. W. Hilbert. 1983. A simulation model of blue grama biomass dynamics, with special attention to translocation mechanisms. Pages 457–466 inW. K. Lauenroth, G. V. Skogerboe, andM. Flug, editors. Analysis of ecological systems: State-of-the-art in ecological modelling. Elsevier Scientific Publ. Co., Amsterdam, The Netherlands.

    Google Scholar 

  6. Barsdate, R. J., R. T. Prentki, and T. Fenchel. 1974. Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239 – 251.

    Article  CAS  Google Scholar 

  7. Bazin, M. J., P. T. Saunders, and J. I. Prosser. 1976. Models of microbial interactions in the soil. C.R.C. Critical Reviews in Microbiology 4: 463 – 498.

    Article  CAS  Google Scholar 

  8. Bertalanffy, L. von . 1968. General System Theory. George Braziller, New York.

    Google Scholar 

  9. Botkin, D. B., J. F. Janak, and J. R. Wallis. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60: 849 – 872.

    Article  Google Scholar 

  10. Bowman, R. A., and D. D. Focht. 1974. The influence of glucose and nitrate concentrations upon denitrification rates in sandy soils. Soil Biol. Biochem. 6: 297 – 301.

    Article  CAS  Google Scholar 

  11. Bunnell, F. L., D. E. N. Tait, P. W. Flanagan, and K. Van Cleve. 1977. Microbial respiration and substrate weight loss. Soil Biol. Biochem. 9: 33 – 40.

    Article  CAS  Google Scholar 

  12. Caldwell, M. M . 1979. Root structure: The considerable cost of belowground function. Pages 408–432 in O. T. Solbrig, S. Jain, G. B. Johnson and P. H. Raven, editors. Topics in Plant Population Biology. Columbia Univ. Press, New York.

    Google Scholar 

  13. Caldwell, M. M., and L. B. Camp. 1974. Belowground productivity of two cool desert communities. Oecologia (Berl.) 17: 123 – 130.

    Article  Google Scholar 

  14. Campbell, C. A., E. A. Paul, and W. B. McGill. 1976. Effect of cultivation and cropping on the amounts and forms of soil N. Pages 7–101 inProc. of Western Canada Nitrogen Symp., Alberta Soil Sci. Workshop, Calgary, Alberta.

    Google Scholar 

  15. Clark, F. E., and E. A. Paul. 1970. The microflora of grasslands. Adv. Agron. 22: 375 – 435.

    Article  CAS  Google Scholar 

  16. Coughenour, M. B., W. J. Parton, W. K. Lauenroth, J. L. Dodd, and R. G.Woodmansee. 1980. Simulation of a grassland sulfur-cycle. Ecol. Model. 9: 179 – 213.

    Article  CAS  Google Scholar 

  17. Cole, C. V., E. T. Elliott, H. W. Hunt, and D. C. Coleman. 1978. Trophic interactions in soils as the affect energy and nutrient dynamics. V. Phosphorus transformations. Microb. Ecol. 4: 381 – 387.

    Article  CAS  Google Scholar 

  18. Cole, C. V., H. W. Hunt, D. C. Coleman, R. V. Anderson, and L. E. Woods. 1984. Trophic interactions in soils as they affect energy and nutrient dynamics. VII. Simulating transfers of carbon, nitrogen, and phosphorus among bacteria, amoebae, and nematodes in soil microcosms. (In prep.).

    Google Scholar 

  19. Coleman, D. C., R. V. Anderson, C. V. Cole, E. T. Elliott, L. Woods, and M. K. Campion. 1978a. Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Microb. Ecol. 4: 373 – 380.

    Article  CAS  Google Scholar 

  20. Coleman, D. C., C. V. Cole, H. W. Hunt, and D. A. Klein. 1978b. Trophic interactions in soils as they affect energy and nutrient dynamics. I. Introduction. Microb. Ecol. 4: 345 – 349.

    Article  CAS  Google Scholar 

  21. Dutt, G. R., M. J. Shaffer, and W. J. Moore. 1972. Computer simulation model of dynamic bio-physicochemical processes in soils. Tech. Bull. 196. Dept. Soils, Water and Engineer, Agric. Exp. Sta., Univ. Arizona, Tucson.

    Google Scholar 

  22. Elliott, E. T., R. V. Anderson, D.. C. Coleman, and C. V. Cole. 1980. Habitable pore space and microbial trophic interactions. Oikos 35: 327 – 335.

    Article  Google Scholar 

  23. Elliott, E. T., C. V. Cole, B. C. Fairbanks, L. E. Woods, R. Bryant, and D. C. Coleman. 1983. Short-term bacterial growth, nutrient uptake, and ATP turnover in sterilized inoculated and C-amended soil: The influence of N availability. Soil Biol. and Biochem. 15: 85 – 91.

    Article  CAS  Google Scholar 

  24. Elliott, E. T., D. C. Coleman, R. V. Anderson, C. V. Cole, H. W. Hunt, L. E. Woods, W. D. Gould, and J. F. McClellan. 1980. Microbial trophic structure and habitable pore space in soil. Pages 1050–1070 in J. P. Giesy, Jr., editor. Microcosms in Ecological Research. Tech. Info. Center, U.S. Dept. Energy. CONF-781101.

    Google Scholar 

  25. Ellis, J. E., and W. J. Parton, editors. 1977. Impact of strip-mine reclamation practices: A simulation study. A report to the Western Energy and Land Use Team, Office of Biological Services, U.S. Fish and Wildlife Service.

    Google Scholar 

  26. Ellis, J. E., J. A. Wiens, C. F. Rodell, and J. E. Anway. 1976. A conceptual model of diet selection as an ecosystem process. J. Theoret. Biol. 60: 93 – 108.

    Article  CAS  Google Scholar 

  27. Fretwell, S. D. 1977. The regulation of plant communities by the food chains exploiting them. Perspect. Biol. Medicine 20: 169 – 185.

    Google Scholar 

  28. Frissel, M. J., and J. A. Van Veen. 1982. A review of models for investigating the behaviour of nitrogen in soil. Phil. Trans. R. Soc. Lond. B 296: 341 – 349.

    Article  Google Scholar 

  29. Gardner, R. H., W. G. Cale, and R. V. O’Neill. 1982. Robust analysis of aggregation error. Ecology 63: 17711779.

    Google Scholar 

  30. Giese, A. C. 1973. Cell Physiology. 4th ed. W. B. Saunders Co., Philadelphia.

    Google Scholar 

  31. Gilmanov, T. G. 1977. Plant submodel in the holistic model of a grassland ecosystem (with special attention to the belowground part). Ecol. Model. 3: 149 – 163.

    Article  Google Scholar 

  32. Gold, H. J. 1977. Mathematical modeling of biological systems—an introductory guidebook. John Wiley & Sons, New York. 357 pp.

    Google Scholar 

  33. Harris, W. F., D. Santantonio, and D. McGinty. 1980. The dynamic belowground ecosystem. Pages 119–129 inR. H. Waring, editor. Forests: Fresh Perspectives from Ecosystem Analysis. Oregon State Univ. Press, Corvallis.

    Google Scholar 

  34. Haas, H. J., C. E. Evans, and E. F. Miles. 1957. Nitrogen and carbon changes in Great Plains soils as influenced by cropping and soil treatments. U.S. Dep. Agric. Tech. Bull. 1164. 111 p.

    Google Scholar 

  35. Hattori, T., and R. Hattori. 1976. The physical environment in soil microbiology: An attempt to extend principles of microbiology to soil microorganisms. CRC Crit. Rev. Microbiol. 4: 423 – 461.

    CAS  Google Scholar 

  36. Heal, O. W., and D. D. French. 1974. Decomposition of organic matter in tundra. Pages 279–310 inA. J. Holding, 0. W. Heal, S. F. MacLean, Jr., P. W. Flanagan, editors. Soil organisms and decomposition in tundra. IBP Tundra Biome.

    Google Scholar 

  37. Hesketh, J. D., and J. W. Jones. 1980. Predicting photosynthesis for ecosystem models. Vol. I and II. CRC Press. Boca Raton, Florida.

    Google Scholar 

  38. Hurlbert, S. H., J. Zedler, and D. Fairbanks. 1972. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science 175: 639 – 641.

    Article  PubMed  CAS  Google Scholar 

  39. Hunt, H. W. 1972. Decomposer section. Pages 138–164 inJ. C. Anway, editor. ELM: Version 1.0. US/IBP Grass,land Biome Tech. Rep. No. 156, Fort Collins, Colo.

    Google Scholar 

  40. Hunt, H. W. 1977. A simulation model for decomposition in grasslands. Ecology 58: 469 – 483.

    Article  CAS  Google Scholar 

  41. Hunt, H. W., C. V. Cole, and E. T. Elliott. 1984. Models for growth of bacteria inoculated into sterilized soil. Soil Sci. (under revision).

    Google Scholar 

  42. Hunt, H. W., C. V. Cole, D. A. Klein, and D. C. Coleman. 1977. A simulation model for the effect of predation on bacteria in continuous culture. Microb. Ecol. 3: 259 – 278.

    Article  CAS  Google Scholar 

  43. Hunt, H. W., C. V. Cole, D. A. Klein, and D. C. Coleman. 1977. A simulation model for the effect of predation on bacteria in continuous culture. Microb. Ecol. 3: 259 – 278.

    Article  CAS  Google Scholar 

  44. Ingham, R. E., J. A. Trofymow, E. R. Ingham, and D. C. Coleman. 1984. Interactions of bacteria, fungi and their nematode grazers: Effects on nutrient cycling and plant growth. Ecol. Monogr. (submitted).

    Google Scholar 

  45. Innis, G. S., editor. 1978. Grassland Simulation Model. Springer-Verlag, New York.

    Google Scholar 

  46. Jenkinson, D. S., and D. S. Powlson. 1976. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8: 209 – 213.

    Article  CAS  Google Scholar 

  47. Jenkinson, D. S., and J. H. Rayner. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123: 298 – 305.

    Article  CAS  Google Scholar 

  48. Jenny, H. 1941. Factors of soil formation. McGrawHill, New York.

    Google Scholar 

  49. Johannes, R. E. 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10: 434 – 442.

    Article  Google Scholar 

  50. Juma, N. G . 1981. Dynamics of soil and fertilizer nitrogen. Ph.D. Thesis, Univ. of Saskatchewan, Canada. 185 p.

    Google Scholar 

  51. Kassim, G., J. P. Martin, and K. Haider. 1981. Incorporation of a wide variety of organic substrate carbons into soil biomass as estimated by fumigation procedure. Soil Sci. Soc. Am. J. 45: 1106 – 1112.

    Article  CAS  Google Scholar 

  52. Kowal, N. E. 1971. A rationale for modeling dynamic ecological systems. Pages 123–194 inB. C. Patten, editor. Systems Analysis and Simulation in Ecology.

    Google Scholar 

  53. Leigh, E. G., Jr. 1968. Making ecology an applied science. Review of Ecology and Resource Management by K. E. F. Watt. Science 160: 1326 – 1327.

    Article  Google Scholar 

  54. Loomis, R. S., R. Rabbinge, and E. Ng. 1979. Explanatory models in crop physiology. Ann. Rev. Plant Physiol. 30: 339 – 367.

    Article  Google Scholar 

  55. Lynch, M. 1979. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24: 253 – 272.

    Article  Google Scholar 

  56. Malhi, S. S., and W. B. McGill. 1982. Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration. Soil Biol. Biochem. 14: 393 – 399.

    Article  CAS  Google Scholar 

  57. McBrayer, J. F., D. E. Reichle, and M. Witkamp. 1974. Energy flow and nutrient cycling in a cryptozoan foodweb. Publ. No. 575, Environmental Sci. Division, Oak Ridge Natl. Lab. EDFB-IBP-73-8.

    Google Scholar 

  58. McGill, W. B., and C. V. Cole. 1981. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26: 267 – 286.

    Article  CAS  Google Scholar 

  59. McGill, W. B., H. W. Hunt, R. G. Woodmansee, and J. O. Reuss. 1981. PHOENIX, a model of the dynamics of carbon and nitrogen in grassland soils. InF. E. Clark and T. Rosswall, editors. Terrestrial Nitrogen Cycles. Ecol. Bull. (Stockholm) 33: 49 – 115.

    Google Scholar 

  60. Melillo, J. M., J. D. Aber, and J. F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621 – 626.

    Article  CAS  Google Scholar 

  61. Minderman, G. 1968. Addition, decomposition and accumulation of organic matter in forests. J. Ecol. 56: 355 – 362.

    Article  Google Scholar 

  62. Morgan, J. A., D. N. Baker, W. J. Parton, C. V. Cole, W. O. Willis, D. E. Smika, A. Bauer, and A. L. Black. 1983. Simulation of climatic and management effects on wheat production. Pages 517–524 in W. K. Lauenroth, G. V. Skogerboe, and M. Flug, editors. Analysis of ecological systems. Proc. 3rd Int. Conf. on State-of-the-art in Ecol. Model.

    Google Scholar 

  63. Mosier, A. R., W. J. Parton, G. L. Hutchinson. 1982. Modelling nitrous oxide evolution from cropped and natural soils. Ecol. Bull. 35:(in press).

    Google Scholar 

  64. Nyhan, J. W. 1976. Influence of soil temperature and water tension on the decomposition rate of carbon–14 labeled herbage. Soil Sci. 121: 288 – 291.

    Article  Google Scholar 

  65. Parker, M. 1975. Similarities between the uptake of nutrients and the ingestion of prey. Verh. Internat. Verein. Limnol. 19: 56 – 59.

    Google Scholar 

  66. Parton, W. J . 1978. Abiotic section of ELM. Pages 31–53 inG. S. Innis, editor. Grassland Simulation Model. Springer-Verlag, New York.

    Google Scholar 

  67. Parton, W. J., W. D. Gould, F. J. Adamson, S. Torbit and R. G. Woodmansee. 1981. NH3 volatilization model. Pages 233–244 inM. J. Frissel and J. A. Van Veen, editors. Simulation of nitrogen behavior of soil-plant systems. Pudoc, Wageningen.

    Google Scholar 

  68. Parton, W. J., J. S. Singh, and D. C. Coleman. 1978. A model of production and turnover of roots in shortgrass prairie. J. Appl. Ecol. 47: 515 – 542.

    Google Scholar 

  69. Parton, W. J., J. Persson, and D. W. Anderson. 1983a. Simulation of organic matter changes in Swedish soils. Pages 511–516 inW. K. Lauenroth, G. V. Skogerboe, and M. Flug, editors. Analysis of ecological systems: State-ofthe-art in ecological modelling. Elsevier Publ. Co. Amsterdam, The Netherlands.

    Google Scholar 

  70. Parton, W. J., D. W. Anderson, C. V. Cole, and J. W. B. Stewart. 1983b. Simulation of soil organic matter formation and mineralization in semiarid agroecosystems. In R. L. Todd, editor. (In press).

    Google Scholar 

  71. Pastan, I., and R. Perlman. 1970. Cyclic adenosine monophosphate in bacteria. Science 169: 339 – 344.

    Article  PubMed  CAS  Google Scholar 

  72. Patten, B. C. 1972. A simulation of the shortgrass prairie ecosystem. Simulation 19: 177 – 186.

    Article  Google Scholar 

  73. Paul, E. A., and J. Van Veen. 1978. The use of tracers to determine the dynamic nature of organic matter. Trans. 11th Int. Congr. Soil Sci. 3: 61 – 102.

    CAS  Google Scholar 

  74. Platt, J. R. 1964. Strong inference. Science 146: 347 – 353.

    Article  PubMed  CAS  Google Scholar 

  75. Porter, K. G. 1976. Enhancement of algal growth and productivity by grazing zooplankton. Science 192: 1332 – 1334.

    Article  PubMed  CAS  Google Scholar 

  76. Powell, E. O . 1967. The growth rate of microorganisms as a function of substrate concentration. Pages 34–55 inE. O. Powell, C. G. T. Evans, R. E. Strange and D. W. Tempest, editors. Microbial Physiology and Continuous Culture.

    Google Scholar 

  77. Ritchie, G. A. F., and D. J. D. Nicholas. 1972. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europae. Biochem. J. 126: 1181 – 1191.

    PubMed  CAS  Google Scholar 

  78. Roels, J. A., and N. W. F. Kossen. 1978. On the modelling of microbial metabolism. Progress in Industrial Microbiology 14: 95 – 203.

    CAS  Google Scholar 

  79. Romesburg, H. C. 1981. Wildlife science: gaining reliable knowledge. J. Wildl. Manage. 45: 293 – 313.

    Article  Google Scholar 

  80. Schimel, D. S . 1982. Nutrient and organic matter dynamics in grasslands: Effects of fire and erosion. Ph.D. dissertation. Colorado State Univ., Ft. Collins.

    Google Scholar 

  81. Scott, J. R., N. R. French, and J. W. Leetham. 1979. Patterns of consumption in grasslands. Pages 89–105 inN. R. French, editor. Perspectives in grassland ecology. Springer-Verlag, New York.

    Google Scholar 

  82. Shugart, H. H., Jr., and D. C. West. 1980. Forest succession models. BioScience 30: 308 – 313.

    Google Scholar 

  83. Singh, J. S., W. K. Lauenroth, H. W. Hunt, and D. M. Swift. 1983. Bias and random errors in estimators of net root production: A simulation approach. Ecology (under revision).

    Google Scholar 

  84. Swift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in terrestrial ecosystems. Blackwell Sci. Publ., London.

    Google Scholar 

  85. Tan, J. S. H., and D. C. Reanney. 1976. Interactions between bacteriophages and bacteria in soil. Soil Biol. Biochem. 8: 145 – 150.

    Google Scholar 

  86. Tanji, K. K., M. Mehran, and S. K. Gupta. 1981. Water and nitrogen fluxes in the root zone. Pages 51–66 inM. J. Frissel and J. A. Van Veen, editors. Simulation of nitrogen behaviour of soil-plant systems. Pudoc, Wageningen.

    Google Scholar 

  87. Tinker, P. B. 1982. Mycorrhizas: The present position, Trans. 12th Int. Congr. Soil Sci., Vol 5, New Delhi, pp 150 – 166.

    Google Scholar 

  88. Tisdall, J. M., and J. M. Oades. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33: 141 – 163.

    Article  CAS  Google Scholar 

  89. Trofymow, J. A., and D. C. Coleman. 1982. The role of bacterivorous and fungivorous nematodes in cellulose and chitin decomposition in the context of a root/rhizosphere/ soil conceptual model. Pages 117–138 inD. W. Freckman and J. A. Wallwork, editors. Nematodes in soil ecosystems. Univ. Texas Press, Austin.

    Google Scholar 

  90. Van Veen, J. A., and M. J. Frissel. 1981. Simulation model of the behaviour of N in soil. Pages 126–144 inM. J. Frissel and J. A. Van Veen, editors. Simulation of nitrogen behaviour of soil-plant systems. Pudoc, Wageningen.

    Google Scholar 

  91. Van Veen, J. A., and E. A. Paul. 1981. Organic carbon dynamics in grassland soils. 1. Background information and computer simulation. Can. J. Soil Sci.61: 185 – 201.

    Article  Google Scholar 

  92. Welch, S. M., B. A. Croft, and M. F. Michels. 1981. Validation of pest management models. Environ. Entomol. 10: 425 – 432.

    Google Scholar 

  93. Wiegert, R. G. 1975. Simulation models of ecosystems. Annu. Rev. Ecol. Syst. 6: 311 – 338.

    Article  Google Scholar 

  94. Wiegert, R. G. 1977. Population models: Experimental tools for analysis of ecosystems. In D. J. Horn, R. Mitchell, and G. R. Stans, editors. Proc. colloquium on analysis of ecosystems. Ohio State Univ. Press, Columbus.

    Google Scholar 

  95. Wildung, R. E., T. R. Garland, and R. L. Buschbom. 1975. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biol. Biochem. 7: 373 – 378.

    Article  CAS  Google Scholar 

  96. de Wit, C. T., and H. van Keulen. 1972. Simulation of transport processes in soils. Centre for Agricultural Publ. and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  97. Witkamp, M., and M. L. Frank. 1970. Effects of temperature, rainfall, and fauna on transfer of 137Cs, K, Mg and mass in consumer-decomposer microcosms. Ecology 51: 465 – 474.

    Article  Google Scholar 

  98. Woodmansee, R. G . 1978. Critique and analyses of the grassland ecosystem model ELM. Pages 257–281 inG. S. Innis, editor. Grassland Simulation Model. SpringerVerlag, New York.

    Google Scholar 

  99. Woods, L. E., C. V. Cole, E. T. Elliott, R. V. Anderson, and D. C. Coleman. 1982. Nitrogen transformations in soil as affected by bacterial-microfaunal interactions. Soil Biol. Biochem. 14: 93 – 98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Hunt, H.W., Parton, W.J. (1986). The Role of Modeling in Research on Microfloral and Faunal Interactions in Natural and Agroecosystems. In: Mitchell, M.J., Nakas, J.P. (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Developments in Biogeochemistry, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5173-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5173-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8789-6

  • Online ISBN: 978-94-009-5173-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics