Skip to main content

Architecture of Tissue Cells

The Structural Basis Which Determines Shape and Locomotion of Cells

  • Chapter
Architecture in Living Structure

Abstract

Shape and locomotion of tissue cells depend on the interaction of elements of the cytoskeleton, adhesion to the substrate and an intracellular hydrostatic pressure. The existence of this pressure becomes obvious from increase in cell volume on cessation of contractile forces and from observations with ultrasound acoustic microscopy. Wherever such an internal pressure is established, it is involved in generation of shape and driving force of cell locomotion. Therefore each hypothesis on cell shape and locomotion must consider this property of a living cell. Apparently different types of locomotion depend on differences in substrate adhesion and/or cytoskeleton organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, A.C. (1973). The role of microfilaments and microtubules in cell movement, endocytosis and exocytosis.— In Locomotion of tissue cells, 109–148. Ed. Ciba Found Symp 14.

    Google Scholar 

  2. Ambrose, E.J. (1961). The movements of fibrocytes.— Expl Cell Res1 (Suppl) 8: 54–72.

    Article  Google Scholar 

  3. Bereiter-Hahn, J., Osborn, M., Weber, K., and Vöth, M. (1979). Filament organization and formation of microridges at the surface of fish epidernis.— J Ultrastruct Res 69: 316–330.

    Article  PubMed  CAS  Google Scholar 

  4. Bereiter-Hahn, J., Strohneier, R., Kunzenbacher, I., Beck, K., and Vöth, M. (1981). Locomotion of Xenopus epidermis cells in primary culture.—J Cell Sci 52: 289–311.

    PubMed  CAS  Google Scholar 

  5. Bereiter-Hahn, J., Strohmeier, R., and Beck, K. (1983). Bestimmung des Dickenprofils von Zellen mit dem Reflexionskontrastmikroskop.— Leitz Mitt f Wiss u Techn Bd VIII: 147–150.

    Google Scholar 

  6. Dipasquale, A. (1975). Locomotory activity of epithelial cells in cuture.— Expl Cell Res 94: 191–215.

    Article  CAS  Google Scholar 

  7. Dipasquale, P., and Bell, P.B. (1974). The upper cell surface: its inability to support active cell movement in culture.— J Cell Biol 62: 198–214.

    Article  PubMed  CAS  Google Scholar 

  8. Dunn, G.A. (1980). Mechanisms ol fibroblast locomotion.— In A.S.G. Curtis and J.D. Pitts, eds., Cell adhesion and motility, 409–423. Cambridge Univ Press.

    Google Scholar 

  9. Fleischer, M., and Wohlfarth-Bottermann, K.E. (1975). Correlation between tension, force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands.— Cytobiol 10: 339–365.

    Google Scholar 

  10. Harris, A.K. (1973). Cell surface movements related to cell locomotion.— In Locomotion of Tissue cells, Ciba Pound. Symp. 14: 3–26. Elsevier, North-Holland.

    Google Scholar 

  11. Heuser, J.E., and Kirschner, M.W. (1980). Filament organization revealed in platinum replicas of freezedried cytoskeletons.— J Cell Biol 86: 212–234.

    Article  PubMed  CAS  Google Scholar 

  12. Heuser, J.E., and Kirschner, M.W. (1980). Filament organization revealed in platinum replicas of freezedried cytoskeletons.— J Cell Biol 86: 212–234.

    Article  PubMed  CAS  Google Scholar 

  13. Izzard, C.S., and Lochner, L.R. (1980). Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study.— J Cell Sci 42: 81–116.

    PubMed  CAS  Google Scholar 

  14. Kamiya, N. (1964). The motive force of endoplasmic stressing in the aneba.— In R.D. Allen and N. Kamiya, eds., Primitive motile systems in cell biology, 257–277. London: Acad Press.

    Google Scholar 

  15. Kamiya, N. (1981). Physical and chemical basis of cytoplasmic streaming.— Ann Rev Plant Physiol 32: 205–236.

    Article  CAS  Google Scholar 

  16. Korohoda, W., Shraidch, Z., Baranovski, Z., and Wohlfarth-Bottermann, K.E. (1983). Energy metabolic regulation of oscillatory contraction activity in Physarum polycephalum.— Cell Tissue Res 231: 675–691.

    Article  PubMed  CAS  Google Scholar 

  17. Kunzenbacher, I., Bereiter-Hahn, J., Osborn, H., and Weber, K. (1982). Dynamics of the cytoskeleton of epidermal cells in situ and in culture.—Cell Tissue Res 222: 445–457.

    Article  PubMed  CAS  Google Scholar 

  18. Layrand, D.B., Matveeva, N.B., Teplov, V.A., and Beylina, S.I. (1972). The role of elastoosmotic parameters in locomotion of myxomycete Plasmodia.— Acta Protozool XI: 339–354.

    Google Scholar 

  19. Mitchison, J.M., and Swann, M.M. (1954). The mechanical properties of the cell surface. I. The cell clastimeter.—J Exp Biol 31: 443–460.

    Google Scholar 

  20. Mittal, A.K., and Bereiter-Hahn, J. (1985). Ionic control of locomotion and shape of epithelial cells.— Cell Motility 5: 123–136.

    Article  PubMed  CAS  Google Scholar 

  21. Radice, G.P. (1980). Locomotion and cell-substratum contacts of Xenopus epidernal cells in vitro and in situ.— J Cell Sci 44: 201–223.

    PubMed  CAS  Google Scholar 

  22. Schlage, W.K., and Bereiter-Hahn, J. (1983). A microscope perfusion respironmeter for continuous respiration measurement of cultured cells during microscopic observation.— Micr Acta 87: 19–34.

    CAS  Google Scholar 

  23. Stossel, T.P. (1982). The structure of cortical cytoplasm. — Phil Trans Soc Lond B 299: 275–289.

    Article  CAS  Google Scholar 

  24. Strohmeier, R. (1984). Untersuchungen zur Lokomotion von Epithelzellen: Strukturelle Grundlagen und Tricbkrafterxeugnung.- Frankfurt: Disserta¬tion an der J.W. Goethe-Univ.

    Google Scholar 

  25. Strohmeier, R., and Bereiter-Hahn, J. (1984). Control of cell shape locomotion by external calcium.— Exp Cell Res 154: 412–420.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor, D.L., and Fechheimer, M. (1981). Cytoplasmic structure and contractility: the solation-contraction coupling hypothesis.— Phil Trans R Soc Lond B 299: 185–197.

    Article  Google Scholar 

  27. Vasiliev, J.M., and Gelfand, I.M. (1976). Effects of colcemid on morpho- genetic processes and locomotion of fibroblasts.— In R. Goldman, T. Pollard and J. Rosenbaum, eds., Cell Motility Book A, 279–304. Cold Spring Harbor Lab.

    Google Scholar 

  28. Wohlfarth-Bottermann, K.E. (1977). Oscillating contractions in protoplasmic strands of Physarum: Simultaneous tensiometry of longitudinal and radial rhythms, periodicity analysis and temperature dependence.— J F.xp Biol 67: 49–59.

    CAS  Google Scholar 

  29. Wohlfarth-Bottermann, K.E., Shraideh, Z., and Baranowski, Z. (1983). Contractile and structural reactions impediments of Ca2+—Homcostasis in Physanm polyoephalum.— Cell Struct and Function 8: 1–11.

    Article  Google Scholar 

  30. Zierold, K. (1978). Probleme der Präparation von Einzelzellen für die Röntgenmikroanalyse im Rasterelektronenmikroskop.— Beitr elektr Direktabb Oberfl 11: 269–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. A. Zweers P. Dullemeijer

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Bereiter-Hahn, J. (1985). Architecture of Tissue Cells. In: Zweers, G.A., Dullemeijer, P. (eds) Architecture in Living Structure. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5169-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5169-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8787-2

  • Online ISBN: 978-94-009-5169-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics