Skip to main content

Composite Materials as Solid Electrolytes

  • Chapter
Solid State Batteries

Part of the book series: NATO ASI Series ((NSSE,volume 101))

Abstract

According to classical theories, when an insulator is added to an electrical conductor, the conductivity of the two phase composite decreases. However, in many cases when the particle size is small, of the order of a micron, the electrical conductivity increases. C. Liang [1] was the first to report this phenomenon for a solid electrolyte. He studied LiI containing a fine dispersion of Al2 O3 particles, LiI (Al2 O3). At room temperature, he reported an enhancement of electrical conductivity of over one order of magnitude for a 35 to 40 mole percent addition of Al2 O3. Furthermore, Liang constructed cells using LiI (Al2 O3) as the solid electrolyte, lithium as the anode and a variety of two phase iodide mixtures as the cathode materials. In each case, the open circuit voltage was virtually the theoretical voltage as calculated from the cell reaction. This showed that the electrical current was predominantly ionic and not electronic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Liang, J. Electrochem. Soc., 120, 1289–1292 (1973).

    Article  CAS  Google Scholar 

  2. C. Liang, U.S. Patent 3,713,897, January 30, 1973.

    Google Scholar 

  3. B.B. Owens and H.J. Hanson, U.S. Patent 4,007, 122, February 8, 1977.

    Google Scholar 

  4. T. Jow and J.B. Wagner, Jr., J. Electrochem. Soc., 126, 1296–1972 (1979).

    Article  Google Scholar 

  5. J.B. Wagner, in Electrode Processes in Solid State Ionics, edited by H. Kleitz and J. Dupuy, D. Reidel Publishing Company, Dordrecht-Holland, 1976, pp. 185–222.

    Google Scholar 

  6. J.B. Wagner, Jr., in Fast Ion Trransport in Ionics edited by W. van Gool, North-Holland Press, Amsterdam, 1973, pp. 409–502.

    Google Scholar 

  7. A.V. Joshi and J.B. Wacmer, Jr., J. Electrochem. Soc., 122, 1071–1080 (1975).

    Article  CAS  Google Scholar 

  8. J. Maier, “Surface Induced Defects as an Explanation of the Two Phase Conductivity Enhancement,” paper presented at the 10th International Reactivity of Solids Symposium, Dijon, France, August 26–September 1, 1984 (to be published).

    Google Scholar 

  9. J. Maier, J. Phys. Chem. Solids (in press).

    Google Scholar 

  10. A. Hooper, Conference on Fast Ionic Transport in Solids, Extended Abstr. 76, Gatlinburg, TN, May 18–22, 1981.

    Google Scholar 

  11. B. Phipps, D.L. Johnson and D.H. Whitmore, ibid.. Extended Abstr. 73.

    Google Scholar 

  12. M. R-W. Chang, K. Shahi and J.B. Wagner, Jr., J. Electrochem. Soc., 131, 1213–1214 (1984).

    Google Scholar 

  13. K. Shahi and J.B. Wagner, Jr., J. Electrochem Soc., 128, 6–13 (1981).

    Article  CAS  Google Scholar 

  14. A. Khandkar and J.B. Wagner, Jr., Extended Abstr. 833, The Electrochemical Society Meeting, San Francisco, May 8–13, (1983).

    Google Scholar 

  15. R. Dupree, J.R. Howells, A. Hooper and F. W. Poulsen, Solid State Ionics, 9 and 10, 131–134 (1983).

    Google Scholar 

  16. O. Kakamura and J.B. Goodenough, Solid State Ionics, Z, 119 (1982).

    Google Scholar 

  17. K. Shahi and J.B. Wagner, Jr., J. Solid State Chem., 12, 107–119 (1982).

    Article  Google Scholar 

  18. K. Shahi and J.B. Wagner, Jr., J. Solid State Chem., 12, 107–119 (1982).

    Article  Google Scholar 

  19. K. Shahi and J.B. Wagner, Jr., J. Phys. Chen. Solids, 42 713–722 (1982).

    Article  Google Scholar 

  20. K. Shahi and J.B. Wagner, Jr., J. Phys. Chen. Solids, 42 713–722 (1982).

    Article  Google Scholar 

  21. J.B. Wagner, Jr., Mat. Res. Bull., 15, 1691–1701 (I960).

    Google Scholar 

  22. S. Pack, Abstr. 133, The Electrochemical Society Meeting, Los Angeles, CA, October 14–19, 1979.

    Google Scholar 

  23. V.W. Hsueh and R.W. Christy, J. Chem. Phys., 22, 3519 (1963).

    Article  Google Scholar 

  24. T. Matsui and J.B. Wagner, Jr., J. Electrochem. Soc., 124, 610–614 (1977).

    Article  CAS  Google Scholar 

  25. J. Rivera, L.A. Murray and P.A. Moss, J. Cryst. Growth, 1, 171 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Wagner, J.B. (1985). Composite Materials as Solid Electrolytes. In: Sequeira, C.A.C., Hooper, A. (eds) Solid State Batteries. NATO ASI Series, vol 101. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5167-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5167-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8786-5

  • Online ISBN: 978-94-009-5167-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics