Skip to main content

On the Rheology of Random Matter

  • Chapter
On Growth and Form

Part of the book series: NATO ASI Series ((NSSE,volume 100))

Abstract

The mechanical properties of random mailer are of importance in two different ways: on one side, one considers the form of matter as granted and one raises questions concerning the effect of the structure on these properties. On the other side, it is of considerable importance to study how the constraints imposed by the mechanics control the problems of growth, in particular for large non-brownian objects. Such a teleological approach was used through D’Arcy Thompson’s classical masterwork.1 We will focus mostly on granular media and will consider properties of both grain and pore phases starting from homogeneous, well-connected media (Sec. 1). In Sec. 2, we will consider the extreme case of very heterogeneously-connected media where bond percolation is often found to apply. In Sec. 3, we will mention effects of macroscopic heterogeneities controlled by hydrodynamic processes, such as in two phase flow in porous media or in flowing suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sir Darcy Thompson, On Growth and Form (Cambridge Univ. Press, 1982), ed. J. P. Bonner. We have labelled the paragraphs from chapters of this work.

    Google Scholar 

  2. By using a small percentage of spheres of larger diameter it is possible to generate 2D disrodered structures which can simulate 3D contact disorder effects.

    Google Scholar 

  3. T. J. Plona and D. L. Johnson, in Physics and Chemistry of Porous Media, eds. D. J. Johnson and P. N. Sen (American Institute of Physics 107, New York, 1984 ), p. 89.

    Google Scholar 

  4. Groupe des systèmes desordonnés (Marseille), Annales de Physique 8, 1 (1983).

    Google Scholar 

  5. L. Oger, Thèse Rennes (1983).

    Google Scholar 

  6. J. P. Clerc, G. Giraud and E. Guyon, Pow. Tech. 35, 107 (1983).

    Article  Google Scholar 

  7. L. Schwartz, D. L. Johnson and S. Feng, Phys. Rev. Lett. 52, 831 (1984).

    Article  Google Scholar 

  8. A. Drescher and G. Josselin de Jong, J. Mech. Phys. Sol. 20, 337 (1972).

    Article  Google Scholar 

  9. R. Ben Aim. Thèse Université de Nancy (1970).

    Google Scholar 

  10. The effect of multiple potential scattering by the solid object, α, is directly related to the index of refraction of acoustic modes of the fluid (4th sound of superfluid He) n2 = α. D. L. Johnson, T. J. Plona, C. Scala, F. Pasierb and H. Kojima, Phys. Rev. Lett. 49, 1840 (1982).

    Google Scholar 

  11. P. Z. Wong, J. Koplik and J. P. Tonamic, Phys. Rev. B 30, 6606 (1984).

    Google Scholar 

  12. P. N. Sen, in Macroscopic Properties of Disordered Media: Lectures Notes in Physics (Springer-Verlag, 1982), Vol. 154.

    Google Scholar 

  13. J. Lemaitre, Thèse Université de Rennes (1985).

    Google Scholar 

  14. P. G. Saffman, J. Fl. Mech. 6, 321 (1959).

    Article  Google Scholar 

  15. C. Baudet, E. Guyon and Y. Pomeau, J. Phys. Lett, (submitted).

    Google Scholar 

  16. S. Grossman and I. Proccacia, Phys. Rev. A 29, 1358 (1984).

    Article  Google Scholar 

  17. M. Fermigier, M. Cloitre, E. Guyon and P. Jenifer, Jour, de Mech. 1, 123 (1982).

    Google Scholar 

  18. A. J. Katz and A. H. Thompson, Phys. Rev. Lett. 54, 1325 (1985).

    Article  Google Scholar 

  19. J. N. Roberts, comment to appear.

    Google Scholar 

  20. S. Roux and E. Guyon, this book.

    Google Scholar 

  21. B. Jouhier, C. Allain, B. Gauthier-Manuel and E. Guyon, in Percolation, Structures and Processes, eds. G. Deutscher, R. Zallen and J. Adler (1st. Phys. Soc., 1983 ), p. 167.

    Google Scholar 

  22. P. G. de Gennes, J. de Phys. Lett. 37, L1 (1976).

    Article  Google Scholar 

  23. J. de Physique 45, 1939 (1984).

    Google Scholar 

  24. B. Gauthier-Manuel, Thèse Paris (1985).

    Google Scholar 

  25. S. Roux and E. Guyon, Jour, de Phys. Lett, (submitted).

    Google Scholar 

  26. D. Deptuck, J. P. Harrison and P. Zawadski, Phys. Rev. Lett. 54, 913 (1985).

    Article  CAS  Google Scholar 

  27. J. Hammersley and D. J. A. Welsh, Cont. Phys. 21, 593 (1980).

    Article  Google Scholar 

  28. Groupe poreux P.C., in Scaling Concepts in Disordered Matter ( Plenum Press, 1985 ). This article contains many references on one- and two-phase flows in porous media.

    Google Scholar 

  29. E. Charlaix, E. Guyon and N. River, Geol. Mag. 122, 157 (1985), and E. Charlaix, à paraitre.

    Google Scholar 

  30. P. C. Robinson, J. Phys. A 16, 605 (1983).

    Article  Google Scholar 

  31. B. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors ( Springer-Verlag, Berlin, 1984 ), p. 130.

    Google Scholar 

  32. E. Charlaix and E. Guyon, to appear and Ref. 28, Chapt. 2. We can also stress the correspondance with the problem of change of class of universality due to large bond disorder around a percolation threshold discussed in these Proceedings by Sen. In the application of his analysis to fractures we should have δm go to zero and all the bonds down to this lowest limit are needed at percolation threshold.

    Google Scholar 

  33. A. Coniglio, these Proceedings.

    Google Scholar 

  34. C. D. Mitescu and J. Roussenq, private communication. In this problem the probabilities are biased by the local currents flowing across the lattice. This is quite different from biased probability problems with an average external field as studied by M. Barma and G. D. Dhar, J. Phys. C 16, 1451 (1983).

    Google Scholar 

  35. P. G. de Gennes, J. of Fl. Mech. 136, 189 (1985).

    Article  Google Scholar 

  36. Groupe poreux P.C.,“ in LES HOUCHES SCHOOL ON FINEL Y DIVIDED MATTER”, ed. M. Daoud (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  37. C. Allain and B. Jouhier, J. Phys. Lett. (Paris) 44, L421 (1983).

    Article  Google Scholar 

  38. P. G. de Gennes, J. Phys. Lett. (Paris) 40, L783 (1979).

    Article  Google Scholar 

  39. C. Camoin, G. Bossis, E. Guyon, R. Blanc and J. F. Brady, Jour, de méca.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Guyon, E. (1986). On the Rheology of Random Matter. In: Stanley, H.E., Ostrowsky, N. (eds) On Growth and Form. NATO ASI Series, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5165-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5165-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-89838-850-3

  • Online ISBN: 978-94-009-5165-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics