Skip to main content

Mechanisms of Induced Resistance to Virus Disease

  • Chapter
Mechanisms of Resistance to Plant Diseases

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 17))

Abstract

Induced resistance to virus disease occurs when, as a result of a primary inoculation or chemical treatment, a plant becomes resistant to a second or challenge inoculation by a related or unrelated pathogen. The resistance induced may be localized or systemic. Such phenomena are also frequently referred to by the terms ‘acquired systemic resistance’ and ‘localized acquired resistance’. The word ‘induced’ is preferred here purely because it implies some active process, rather than the passiveness which ‘acquisition’ tends to imply. However, the use of ‘induced’ in this connection should not be confused with its other use in the context of constitutive (gene-for-gene) resistance, i.e. the activation of an intrinsic but previously latent resistance mechanism during an early phase of the primary infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Jawdah, Y. (1982). Changes in the soluble protein patterns of bean leaves upon fungal or viral infections or after chemical injury. Phytopathologische Zeitschrift 103, 272–279.

    CAS  Google Scholar 

  • Ahl, P., Benjama, A., Samson, R. & Gianinazzi, S. (1981). New host proteins (b-proteins) induced together with resistance to a secondary infection following a bacterial infection in tobacco. Phytopatholgische Zeitschrift 102, 201–212.

    CAS  Google Scholar 

  • Ahl, P., Cornu, A. & Gianinazzi, S. (1982). Soluble proteins as genetic markers in studies of resistance and phylogeny in Nicotiana. Phytopathology 72, 80–85.

    CAS  Google Scholar 

  • Ahl, P. & Gianinazzi, S. (1982). Bproteins as a constitutive component in highly (TMV) resistant interspecific hybrids of Nicotiana glutinosa x Nicotiana debneyi. Plant Science Letters 26, 173–181.

    CAS  Google Scholar 

  • Ahoonmanesh, A. & Shalla, T.R. (1981). Feasibility of cross-protection for control of tomato mosaic virus in fresh market field-grown tomatoes. Plant Disease 65, 56–57.

    Google Scholar 

  • Antoniw, J.F., Kueh, J.S.N., Walkey, D.G.A. & White, R.F. (1981). The presence of pathogenesis-related proteins in callus of Xanthi-nc tobacco. Phytopathologische Zeitschrift 101, 179–184.

    CAS  Google Scholar 

  • Antoniw, J.F. & Pierpoint, W.S. (1978). The purification and properties of the ‘b’ proteins from virus-infected tobacco plants. Journal of General Virology 39, 343–350.

    CAS  Google Scholar 

  • Antoniw, J.F., Ritter, C.E., Pierpoint, W.S. & Van Loon, L.C. (1980). Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. Journal of General Virology 47, 79–87.

    CAS  Google Scholar 

  • Antoniw, J.F. & White, R.F. (1980). The effects of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathologische Zeitschrift 98, 331–341.

    CAS  Google Scholar 

  • Antoniw, J.F. & White, R.F. (1983). Biochemical properties of the pathogenesis-related proteins from tobacco. Netherlands Journal of Plant Pathology 89, 255–264.

    CAS  Google Scholar 

  • Atkinson, P.H. & Matthews, R.E.F. (1970). On the origin of dark green tissue in tobacco leaves infected with tobacco mosaic virus. Virology 40, 344–356.

    PubMed  CAS  Google Scholar 

  • Balaraman, K. (1981). Preimmunization for control of citrus tristeza virus on citron. Zeitschrift f8r Pflanzenkrankheiten and Pflanzenschutz 88, 218–220.

    Google Scholar 

  • Balazs, E., Barna, B. & Kiraly, Z. (1976). Effect of kinetin on lesion development and infection sites in Xanthi nc tobacco infected by TMV: single cell lesions. Acta Phytopathologica Academiae Scientiarum Hungaricae 11, 1–9.

    CAS  Google Scholar 

  • Balazs, E., Sziraki, I. & Kiraly, Z. (1977). The role of cytokinins in the systemic acquired resistance of tobacco hypersensitive to tobacco mosaic virus. Physiological Plant Pathology 11, 29–37.

    CAS  Google Scholar 

  • Barker, H. & Harrison, B.D. (1978). Double infection, interference and superinfection in protoplasts exposed to two strains of raspberry ringspot virus. Journal of General Virology 40, 647–658.

    Google Scholar 

  • Batra, G.K. & Kuhn, C.W. (1975). Polyphenoloxidase and peroxidase activities associated with acquired resistance and its inhibition by 2-thiouracil in virus-infected soybean. Physiological Plant Pathology 5, 239–248.

    CAS  Google Scholar 

  • Bennett, C.W. (1955). Recovery of water pimpernel from curly top and the reaction of recovered plants to re-inoculation with different virus strains. Phytopathology 45, 531–536.

    Google Scholar 

  • Benson, A.A. & Jekela, A.T. (1976). Cell Membranes. In ‘Plant Biochemistry’ (3rd Edition) ( Bonner, J. & Varner, J.E., eds), pp. 65–89. Academic Press, New York.

    Google Scholar 

  • Bercks, R. (1948). Serologische Beitruge zür Frage der Abwehr von Zweitinfektionen bei X-Viren. Phytopathologische Zeitschrift 25, 54–61.

    Google Scholar 

  • Biddington, N.L. & Thomas, T.H. (1978). Influence of different cytokinins on the transpiration and senescence of excised oat leaves. Physiologia Plantarum 42, 369–374.

    CAS  Google Scholar 

  • Bozarth, R.F. & Ross, A.F. (1964). Systemic resistance induced by localized virus infections: extent of changes in uninfected plant parts. Virology 24, 446–455.

    PubMed  CAS  Google Scholar 

  • Broadbent, L. (1976). Epidemiology and control of tomato mosaic virus. Annual Review of Phytopathology 14, 75–96.

    Google Scholar 

  • Caldwell, J. (1934). The physiology of virus diseases in plants. V. The movement of the virus agent in tobacco and tomato. Annals of Applied Biology 21, 191–205.

    Google Scholar 

  • Camacho-Henriquez, A. & Anger, H.L. (1982). Analysis of acid-extractable tomato leaf proteins after infection with a viroid, two viruses and a fungus, and partial purification of the pathogenesis-related protein p14. Archives of Virology 74, 181–196.

    PubMed  CAS  Google Scholar 

  • Camacho-Henriquez, A., Lucas, J. & Anger, H.L. (1983). Purification and biochemical properties of the ‘pathogenesis-related’ protein p14 from tomato leaves. Netherlands Journal of Plant Pathology 89, 308.

    Google Scholar 

  • Carlson, P.S. & Murakishi, H.H. (1978). Evidence on the clonal versus non-clonal origin of dark green islands in virus-infected tobacco leaves. Plant Science Letters 13, 377–381.

    Google Scholar 

  • Carr, J.P. (1983). Translational control of pathogenesis-related protein synthesis. Netherlands Journal of Plant Pathology 89, 311–312.

    Google Scholar 

  • Carr, J.P., Antoniw, J.F., White, R.F. & Wilson, T.M.A. (1982). Latent messenger RNA in tobacco (Nicotiana tabacum). Biochemical Society Transactions 10, 353–354.

    CAS  Google Scholar 

  • Cassells, A.C., Barnett, A. & Barlass, M. (1978). The effect of polyacrylic acid treatment on the susceptibility of Nicotiana tabacum cv. Xanthi-nc to tobacco mosaic virus. Physiological Plant Pathology 13, 13–21.

    CAS  Google Scholar 

  • Cassells, A.C. & Herrick, C.C. (1977a). Cross protection between mild and severe strains of tobacco mosaic virus in doubly-inoculated tomato plants. Virology 78, 253–260.

    CAS  Google Scholar 

  • Cassells, A.C. & Herrick, C.C. (1977b). The identification of mild and severe strains of tobacco mosaic virus in doubly inoculated tomato plants. Annals of Applied Biology 86, 37–46.

    CAS  Google Scholar 

  • Chalcroft, J.P. & Matthews, R.E.F. (1967). Role of virus strain and leaf ontogeny in the production of mosaic patterns by turnip yellow mosaic virus. Virology 33, 659–673.

    PubMed  CAS  Google Scholar 

  • Chamberlain, E.E., Atkinson, J.D. & Hunter, J.R. (1964). Cross protection between strains of apple mosaic virus. New Zealand Journal of Agricultural Research 7, 480–490.

    Google Scholar 

  • Chamberlain, J.A., Catherall, P.C. & Jennings, A.J. (1977). Symptoms and electron microscopy of ryegrass mosaic virus in different grass species. Journal of General Virology 36, 297–306.

    Google Scholar 

  • Channon, R.G., Cheffins, N.J., Hitchon, G.M. & Barker, J. (1978). The effect of inoculation with an attenuated mutant strain of tobacco mosaic virus on the growth and yield of early glasshouse tomato crops. Annals of Applied Biology 88, 121–129.

    Google Scholar 

  • Chessin, M. (1982). Interference in plant virus infection: ultraviolet light and systemic acquired resistance. Phytopathologische Zeitschrift 104, 279–283.

    Google Scholar 

  • Conejero, V. & Semancik, J.S. (1977). Exocortis viroid: alteration in the proteins of Gynura aurantiaca accompanying viroid infection. Virology 77, 221–232.

    PubMed  CAS  Google Scholar 

  • Costa, A.S, & Muller, G.W. (1980). Tristeza control by cross protection: a U.S.-Brazil cooperative success. Plant Disease 64, 538–541.

    Google Scholar 

  • Coutts, R.H.A. (1978). Alterations in the soluble protein patterns of tobacco and cowpea leaves following inoculation with tobacco necrosis virus. Plant Science Letters 12, 189–197.

    CAS  Google Scholar 

  • Coutts, R.H.A. & Wagih, E.E. (1981). Alterations in RNA and protein metabolism in uninoculated half-leaves of cowpea adjacent to tobacco necrosis virus-infected halves. Plant Science Letters 21, 51–59.

    CAS  Google Scholar 

  • Coutts, R.H.A. & Wagih, E.E. (1983). Induced resistance to viral infection and soluble protein alterations in cucumber and cowpea plants. Phytopathologische Zeitschrift 107, 57–69.

    Google Scholar 

  • Damirdagh, I.S. & Ross, A.F. (1967). A marked synergistic reaction of potato viruses X and Y in inoculated leaves of tobacco. Virology 31, 296–307.

    PubMed  CAS  Google Scholar 

  • De Laat, A.M.M. & Van Loon, L.C. (1983). The relationship between stimulated ethylene production and symptom expression in virus-infected tobacco leaves. Physiological Plant Pathology 22, 261–273.

    Google Scholar 

  • De Zoeten, G.A. & Fulton, R.W. (1975). Understanding generates possibilities. Phytopathology 65, 221–222.

    Google Scholar 

  • Dodds, J.A. (1982). Cross-protection and interference between electrophoretically distinct strains of cucumber mosaic virus in tomato. Virology 118, 235–240.

    PubMed  CAS  Google Scholar 

  • Dodds, J.A. & Hamilton, R.I. (1972). The influence of barley stripe mosaic virus on the replication of tobacco mosaic virus in Hordeum vulgare L. Virology 50, 404–411.

    Google Scholar 

  • Dodds, J.A. & Hamilton, R.I. (1974). Masking of the RNA genome of tobacco mosaic virus by the protein of barley stripe mosaic virus in doubly infected barley. Virology 59, 418–426.

    PubMed  CAS  Google Scholar 

  • Faccioli, G. (1979). Relation of peroxidase, catalase and polyphenoloxidase to acquired resistance in plants of Chenopodium amaranticolor locally infected by tobacco necrosis virus. Phytopathologische Zeitschrift 95, 237–249.

    CAS  Google Scholar 

  • Fletcher, J.T. (1978). The use of avirulent virus strains to protect plants against the effects of virulent strains. Annals of Applied Biology 89, 110–114.

    Google Scholar 

  • Fletcher, J.T. & Rowe, J.M. (1975). Observations and experiments on the use of an avirulent mutant strain of tobacco mosaic virus as a means of controlling tomato mosaic. Annals of Applied Biology 81, 171–179.

    PubMed  CAS  Google Scholar 

  • Fraser, R.S.S. (1975). Turnover of polyadenylated messenger RNA in fission yeast: evidence for the control of protein synthesis at the translational level. European Journal of Biochemistry 60, 477–486.

    PubMed  CAS  Google Scholar 

  • Fraser, R.S.S. (1979). Systemic consequences of the local lesion reaction to tobacco mosaic virus in a tobacco variety lacking the N gene for hypersensitivity. Physiological Plant Pathology 14, 383–394.

    Google Scholar 

  • Fraser, R.S.S. (1981). Evidence for the occurrence of the “pathogenesis-related” proteins in leaves of healthy tobacco plants during flowering. Physiological Plant Pathology 19, 69–76.

    CAS  Google Scholar 

  • Fraser, R.S.S. (1982). Are ‘pathogenesis-related’ proteins involved in acquired systemic resistance of tobacco plants to tobacco mosaic virus? Journal of General Virology 58, 305–313.

    CAS  Google Scholar 

  • Fraser, R.S.S. & Clay, C.N. (1983). Pathogenesis-related proteins and acquired systemic resistance: causal relationship or separate effects? Netherlands Journal of Plant Pathology 89, 283–292.

    CAS  Google Scholar 

  • Fraser, R.S.S., Loughlin, S.R.R. & Whenham, R.J. (1979). Acquired systemic susceptibility to infection by tobacco mosaic virus in Nicotiana qlutinosa L. Journal of General Virology 43, 131–141.

    CAS  Google Scholar 

  • Fraser, R.S.S. & Whenham, R.J. (1982). Plant growth regulators and virus infection: a critical review. Plant Growth Regulation 1, 37–59.

    CAS  Google Scholar 

  • Fritig, B., Gosse, J., Legrand, N. & Hirth, L. (1973). Changes in phenylalanine ammonia lyase during the hypersensitive reaction of tobacco to TNV. Virology 55, 371–379.

    PubMed  CAS  Google Scholar 

  • Fulton, R.W. (1951). Superinfection by strains of tobacco mosaic virus. Phytopathology 41, 579–592.

    Google Scholar 

  • Fulton, R.W. (1978). Superinfection by strains of tobacco streak virus. Virology 85, 1–8.

    PubMed  CAS  Google Scholar 

  • Fulton, R.W. (1980). The protective effects of systemic virus infection. In ‘Active Defense Mechanisms in Plants’ ( Wood, R.K.S., ed.), pp. 231–246. Plenum Press, New York and London.

    Google Scholar 

  • Gianinazzi, S. (1982). Antiviral agents and inducers of virus resistance: analogies with interferon. In ‘Active defense mechanisms in plants’ ( Wood, R.K.S., ed.), pp. 275–298. Plenum Press, New York & London.

    Google Scholar 

  • Gianinazzi, S. & Ahl, P. (1983). The genetic and molecular basis of b-proteins in the genus Nicotiana. Netherlands Journal of Plant Pathology 89, 275–281.

    CAS  Google Scholar 

  • Gianinazzi, S., Ahl, P., Cornu, A., Scalla, R. & Cassini, R. (1980). First report of host b-protein appearance in response to a fungal infection in tobacco. Physiological Plant Pathology 16, 337–342.

    CAS  Google Scholar 

  • Gianinazzi, S. & Kassanis, S. (1974). Virus resistance induced in plants by polyacrylic acid. Journal of General Virology 13, 1–9.

    Google Scholar 

  • Gianinazzi, S., Martin, C. & Valee, J.-C. (1970). Hypersensibilite aux virus, temperature et proteines solubles chez le Nicotiana Xanthi n.c. Apparition de nouvelles macromolecules lors de la repression de la synthese virale. Compte rendu hebdomadaire des seances de l’Academie des Sciences de Paris 270D, 2383–2386.

    Google Scholar 

  • Gianinazzi, S., Pratt, H.N., Shewry, P.R. & Niflin, B.J. (1977). Partial purification and preliminary characterisation of soluble leaf proteins specific to virus-infected tobacco plants. Journal of General Virology 34, 345–351.

    Google Scholar 

  • Gibbs, A. (1969). Plant virus classification. Advances in Virus Research 14, 263–328.

    PubMed  CAS  Google Scholar 

  • Gicherman, G. & Loebenstein, G. (1968). Competitive inhibition by foreign nucleic acids and induced interference by yeast RNA with the infection of tobacco mosaic virus. Phytopathology58, 405–409.

    CAS  Google Scholar 

  • Gilpatrick, J.D. & Weintraub, N. (1952). An unusual type of protection with the carnation mosaic virus. Science 115, 701–702.

    PubMed  CAS  Google Scholar 

  • Greber, R.S. (1966). Passionfruit woodiness virus as the cause of passionvine tip blight disease. Queensland Journal of Agricultural and Animal Science 23, 533–536.

    Google Scholar 

  • Harrison, B.D. (1958). Ability of single aphids to transmit both avirulent and virulent strains of potato leafroll virus. Virology 6, 278–286.

    PubMed  CAS  Google Scholar 

  • Hecht, E.I. & Bateman, D.F. (1964). Nonspecific acquired resistance to pathogens resulting from localized infections by Thielaviopsis basicola or viruses in tobacco leaves. Phytopathology 54, 523–530.

    Google Scholar 

  • Ikegami, N. & Fraenkel-Conrat, H. (1980). Lack of specificity of virus-stimulated RNA-dependent RNA polymerases. Virology 100, 185–188.

    PubMed  CAS  Google Scholar 

  • Kassanis, B. (1982). Some speculations on the nature of the natural defence mechanism of plants against virus infection. Phytopathologische Zeitschrift 102, 277–291.

    Google Scholar 

  • Kassanis, B., Gianinazzi, S. & White, R.F. (1974). A possible explanation of the resistance of virus-infected tobacco plants to second infection. Journal of General Virology 23, 11–16.

    Google Scholar 

  • Kassanis, B. & White, R.F. (1974). Inhibition of acquired resistance to tobacco mosaic virus by actinomycin-D. Journal of General Virology 25, 323–324.

    PubMed  CAS  Google Scholar 

  • Kassanis, B. & White, R.F. (1975). Polyacrylic acid-induced resistance to tobacco mosaic virus in tobacco cv. Xanthi. Annals of Applied Biology 79, 215–220.

    Google Scholar 

  • Kassanis, B. & White, R.F. (1978). Effect of polyacrylic acid and b-proteins on TMV multiplication in tobacco protoplasts. Phytopathologische Zeitschrift 91, 269–272.

    CAS  Google Scholar 

  • Kavanau, J.L. (1949). On correlation of the phenomena associated with chromosomes, foreign proteins and viruses. III. Virus-associated phenomena, characteristics and reproduction. American Naturalist 83, 113–138.

    Google Scholar 

  • Kluge, S. (1976). Proteingehalt in hell and dunkelgrünen Blattbezirken mosaikkranker Tabakpflanzen. Biochemie and Physiologie der Pflanzen 170, 91–95.

    CAS  Google Scholar 

  • Kehler, E. & Hauschild, I. (1947). Betrachtungen and Versuche zum Problem der „erwarbenen ImmunitMt“ gegen Virusinfektionen bei Pflanzen. Zuchter 17 /18, 97–105.

    Google Scholar 

  • Loebenstein, G. (1962). Inducing partial protection in the host plant with native virus protein. Virology 17, 574–581.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G. (1963). Further evidence on systemic resistance induced by localized necrotic virus infections in plants. Phytopathology 53, 306–308.

    Google Scholar 

  • Loebenstein, G., Cohen, J., Shabtai, S., Coutts, R.N.A. & Wood, K.R. (1977). Distribution of cucumber mosaic virus in systemically-infected tobacco leaves. Virology 81, 117–125.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G., Rabina, S. & van Praagh, T. (1968). Sensitivity of induced localized acquired resistance to actinomycin-D. Virology 34, 264–268.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G., Sela, I & van Praagh, T. (1969). Increase of tobacco mosaic virus lesion size and virus multiplication in hypersensitive hosts in the presence of actinomycin-D. Virology 37, 42–48.

    PubMed  CAS  Google Scholar 

  • McIntyre, J.L., Dodds, J.R. & Hare, J.D. (1981). Effects of localized infections of Nicotiana tabacum by tobacco mosaic virus on systemic resistance against diverse pathogens and an insect. Phytopathology 71, 297–301.

    Google Scholar 

  • Miller, W.A. & Hall, T.C. (1984). RNA-dependent RNA polymerase isolated from cowpea chlorotic mottle virus-infected cowpea is specific for bromovirus RNA. Virology 132, 53–60.

    PubMed  CAS  Google Scholar 

  • Murakishi, H.H. & Carlson, P.S. (1976). Regeneration of virus-free plants from dark green islands of tobacco mosaic virus-infected tobacco leaves. Phytopathology 66, 931–932.

    Google Scholar 

  • Murant, A.F., Taylor, C.E. & Chambers, J. (1968). Properties, relationships and transmission of a strain of raspberry ringspot virus infecting raspberry cultivars immune to the common Scottish strain. Annals of Applied Biology 61, 175–186.

    Google Scholar 

  • Nagai, Y. (1977). Control of the mosaic disease of tomato by seedling inoculation with the attenuated strain of TMV. Tropical Agricultural Research Series 10, 179–183.

    Google Scholar 

  • Nhu, K.M., Mayee, C.D. & Sarkar, S. (1982). Reduced synthesis of PVY in PVX-infected tobacco plants. Naturwissenschaften 69, 183–184.

    Google Scholar 

  • Niblett, C.L., Dickson, E. Fernow, K.H. Horst, R.K. & Zaitlin, M. (1978). Cross protection among four viroids. Virology 91, 198–203.

    CAS  Google Scholar 

  • Nitzany, F.C. & Cohen, S. (1960). A case of interference between alfalfa mosaic virus and cucumber mosaic virus. Virology 11, 771–773.

    PubMed  CAS  Google Scholar 

  • Oshima, N. (1981). Control of tomato mosaic disease by attenuated virus. Japan Agricultural Research Quarterly 14, 222–228.

    Google Scholar 

  • Otsuki, Y. & Takebe, I. (1976). Interaction of tobacco mosaic virus strains in doubly infected tobacco protoplasts. Annals de Microbiologie (Institut Pasteur) 127A, 21.

    CAS  Google Scholar 

  • Otsuki, Y. & Takebe, I. (1978). Production of mixedly coated particles in tobacco mesophyll protoplasts doubly infected by strains of tobacco mosaic virus. Virology 84, 162–171.

    PubMed  CAS  Google Scholar 

  • Parent, J.G. & Asselin, A. (1984). Detection of pathogenesis-related (PR or b) and of other proteins in the intercellular fluid of hypersensitive plants infected with tobacco mosaic virus. Canadian Journal of Botany 62, 564–569.

    CAS  Google Scholar 

  • Paulsen, A.Q. & Sill, W.H. (1970). Absence of cross protection between maize dwarf virus strains A and 8 in grain sorghums. Plant Disease Reporter 54, 627–629.

    Google Scholar 

  • Pelcher, L.E., Walmsley, S.L. & Mackenzie, S.L. (1980). The effects of heterologous and homologous coat protein on alkaline disassembly of tobacco and tomato isolates of tobacco mosaic virus. Virology 105, 287–290.

    PubMed  CAS  Google Scholar 

  • Pennazio, S. & Redolfi, P. (1980). Resistance to tomato bushy stunt virus localized infection induced in Gomphrena qlobosa by acetylsalicylic acid. Microbiologica 3, 475–479.

    CAS  Google Scholar 

  • Pennazio, S., Roggero, P. & Lenzi, R. (1983). Some characteristics of the hypersensitive response of White Burley tobacco to tobacco necrosis virus. Physiological Plant Pathology 22, 347–355.

    CAS  Google Scholar 

  • Pierpoint, W.S. (1983). The major proteins in extracts of tobacco leaves that are responding hypersensitively to virus infection. Phytochemistry 22, 2691–2697.

    CAS  Google Scholar 

  • Pierpoint, W.S., Robinson, N.P. & Leason, M.B. (1981). The pathogenesis-related proteins of tobacco: their induction by viruses in intact plants and their induction by chemicals in detached leaves. Physiological Plant Pathology 19, 85–97.

    CAS  Google Scholar 

  • Posnette, A.F. & Cropley, R. (1956). Apple mosaic viruses: host reactions and strain interference. Journal of Horticultural Science 31, 119–133.

    Google Scholar 

  • Posnette, A.F. & Todd, J.M. (1955). Virus diseases of cacao in west Africa. IX. Strain variation and interference in virus 1A. Annals of Applied Biology 43, 433–453.

    Google Scholar 

  • Rast, R.T.B. (1975). Variability of tobacco mosaic virus in relation to control of tomato mosaic in glasshouse crops by resistance breeding and cross protection. Agricultural Research Reports, Wageningen (Netherlands) 834, 1–76.

    Google Scholar 

  • Redolfi, P. (1983). Occurrence of pathogenesis-related (b) and similar proteins in different plant species. Netherlands Journal of Plant Pathology 89, 245–254.

    CAS  Google Scholar 

  • Redolfi, P., Vecchiati, M. & Gianinazzi, S. (1982). Changes in the soluble leaf protein constitution of Gomphrena qlobosa during the hypersensitive reaction to different viruses. Phytopathologische Zeitschrift 103, 48–54.

    Google Scholar 

  • Reid, M.S. & Matthews, R.E.F. (1966). On the origin of the mosaic induced by turnip yellow mosaic virus. Virology 28, 563–570.

    PubMed  CAS  Google Scholar 

  • Roberts, D.A. (1983). Acquired resistance to tobacco mosaic virus transmitted to the progeny of hypersensitive tobacco. Virology 124, 161–163.

    PubMed  CAS  Google Scholar 

  • Rohloff, H. & Lerch, B. (1977). Soluble leaf proteins in virus-infected plants and acquired resistance. 1. Investigations on Nicotiana tabacum cvs Xanthi-nc and Samsun. Phytopathologische Zeitschrift 89, 306–316.

    Google Scholar 

  • Ross, A.F. (1961a). Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14, 329–339.

    CAS  Google Scholar 

  • Ross, A.F. (1961b). Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340–358.

    CAS  Google Scholar 

  • Ross, A.F. (1966). Systemic effects of local lesion formation. In ‘Viruses of Plants’ ( Beemster, A.B.R. & Dijkstra, J., eds), pp. 127–150. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Ross, A. F. & Israel, H.W. (1970). Use of heat treatments in the study of acquired resistance to tobacco mosaic virus in hypersensitive tobacco. Phytopathology 60, 755–770.

    Google Scholar 

  • Sadasivan, T.S. (1940). A quantitative study of the interaction of viruses in plants. Annals of Applied Biology 27, 359–367.

    Google Scholar 

  • Solemn, R.N. (1933). Protective inoculation against a plant virus. Nature 131, 168.

    Google Scholar 

  • Salaman, R.N. (1938). The potato virus “X”: its strains and reactions. Philosophical Transactions of the Royal Society (B) 229, 137–217.

    Google Scholar 

  • Sarkar, S. & Smitamana, P. (1981). A proteinless mutant of tobacco mosaic virus: evidence against the role of a viral coat protein for interference. Molecular and General Genetics 184, 158.

    PubMed  CAS  Google Scholar 

  • Sequeira, L. (1984). Cross protection and induced resistance: their potential for plant disease control. Trends in Biotechnology 2, 25–29.

    Google Scholar 

  • Shells, T.A. & Petersen, L.J. (1978). Studies on the mechanism of viral cross protection. Phytopathology 68, 1681–1683.

    Google Scholar 

  • Sherwood, J.L & Fulton, R.W. (1982). The specific involvement of coat protein in tobacco mosaic virus cross protection. Virology 119, 150–158.

    PubMed  CAS  Google Scholar 

  • Sherwood, J.L. & Fulton, R.W. (1983). Competition for infection sites and multiplication of the competing strain in plant viral interference. Phytopathology 73, 1363–1365.

    Google Scholar 

  • Simons, T.J. & Ross, A.F. (1971). Changes in phenol metabolism associated with induced systemic resistance to tobacco mosaic virus in Samsun NN tobacco. Phytopathology 61, 1261–1265.

    CAS  Google Scholar 

  • Stein, A. & Loebenstein, G. (1972). Induced interference by synthetic polyanions with the infection of tobacco mosaic virus. Phytopathology 62, 1461–1466.

    CAS  Google Scholar 

  • Stein, A. & Loebenstein, G. (1976). Peroxidase activity in tobacco plants with polyanion-induced interference to tobacco mosaic virus. Phytopathology 66, 1192–1194.

    CAS  Google Scholar 

  • Stein, A., Loebenstein, G. & Spiegel, S. (1979). Further studies of induced interference by a synthetic polyanion of infection by tobacco mosaic virus. Physiological Plant Pathology 15, 241–255.

    Google Scholar 

  • Sziraki, I. & Balazs, E. (1975). The effect of infection by TMV on cytokinin level of tobacco plants, and cytokinins in TMV-RNA. In ‘Current Topics in Plant Pathology’ ( Kiraly, Z. ed.), pp. 345–352. Akademiai Kiado, Budapest.

    Google Scholar 

  • Sziraki, I., Balazs, E. & Kiraly, Z. (1980). Role of different stresses in inducing systemic acquired resistance to TMV and increasing cytokinin level in tobacco. Physiological Plant Pathology 16, 277–284.

    CAS  Google Scholar 

  • Thomas, P. & Fulton, R.W. (1968a). Correlation of the ectodesmata number with nonspecific resistance to initial virus infection. Virology 34, 459–469.

    CAS  Google Scholar 

  • Thomas, P.E. & Fulton, R.W. (1968b). Resistance to spread of virus from cell to cell in T.I. 245 tobacco. Virology 55, 108–111.

    Google Scholar 

  • Tomkins, G.N., Gelehrter, T.D., Martin, D., Samuels, H.H. & Thompson, E.B. (1969). Control of specific gene expression in higher organisms. Science 166, 1474–1480.

    PubMed  CAS  Google Scholar 

  • Tomlinson, J.A. & Shepherd, R.J. (1978). Studies on mutagenesis and cross-protection of cauliflower mosaic virus. Annals of Applied Biology 90, 223–231.

    Google Scholar 

  • Tosic, M. (1981). Cross protection among some strains of sugarcane mosaic virus and maize dwarf mosaic virus. Agronomie 1, 83–85.

    Google Scholar 

  • Van Loon, L.C. (1975). Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var ‘Samsun’ and ‘Samsun-NN’. IV. Similarity of qualitative changes of specific proteins after infection with different viruses and their relationship to acquired resistance. Virology 67, 566–575.

    CAS  Google Scholar 

  • Van Loon, L.C. (1976a). Specific soluble leaf proteins in virus-infected tobacco plants are not normal constituents. Journal of General Virology 30, 375–379.

    Google Scholar 

  • Van Loon, L.C. (1976b). Systemic acquired resistance, peroxidase activity and lesion size in tobacco reacting hypersensitively to TMV. Physiological Plant Pathology 8, 231–242.

    Google Scholar 

  • Van Loon, L.C. (1977). Induction by 2-chloroethylphosphonic acid of viral-like lesions, associated proteins and systemic resistance in tobacco. Virology 80, 417–420.

    PubMed  Google Scholar 

  • Van Loon, L.C. (1982). Regulation of changes in proteins and enzymes associated with active defence against virus infection. In ‘Active Defense Mechanisms in Plants’ ( Wood, R.K.S., ed.), pp. 247–274. Plenum Press, New York and London.

    Google Scholar 

  • Van Loon, L.C. (1983). The induction of pathogenesis-related proteins by pathogens and specific chemicals. Netherlands Journal of Plant Pathology 89, 265–273.

    Google Scholar 

  • Van Loon, L.C. & Antoniw, J.F. (1982). Comparison of the effects of salicylic acid and ethephon with virus induced hypersensitivity and acquired resistance in tobacco. Netherlands Journal of Plant Pathology 88, 237–256.

    Google Scholar 

  • Van Loon, L.C. & Dijkstra, J. (1976). Virus-specific expression of systemic acquired resistance in tobacco mosaic virus-and tobacco necrosis virus-infected ‘Samsun NN’ and ‘Samsun’ tobacco. Netherlands Journal of Plant Pathology 82, 231–237.

    Google Scholar 

  • Van Loon, L.C. & Van Kammen, A. (1970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from N. tabacum var. Samsun and Samsun NN. II. changes in protein constitution after infection with TMV. Virology 40, 199–211.

    Google Scholar 

  • Vlasov, Y.I. (1979). A method of vaccinating against viruses. Zashchita Rastenii (Moscow) 7, 20–22.

    Google Scholar 

  • Wagih, E.E. & Coutts, R.H.R. (1982). Comparison of virus-elicited and other stresses on the soluble protein fraction of cucumber cotyledons. Phytopathologische Zeitschrift 104, 364–374.

    CAS  Google Scholar 

  • Watts, J.W. & Dawson, J.R.O. (1980). Double infection of tobacco protoplasts with brome mosaic virus and cowpea chlorotic mottle virus. Virology 105, 501–507.

    PubMed  CAS  Google Scholar 

  • Weintraub, M. & Kemp, W.G. (1961). Protection with carnation mosaic virus in Dianthus barbatus. Virology 13, 256–257.

    PubMed  CAS  Google Scholar 

  • Whenham, R.J. & Fraser, R.S.S. (1981). Effect of systemic and local-lesion-forming strains of tobacco mosaic virus on abscisic acid concentration in tobacco leaves: consequences for the control of leaf growth. Physiological Plant Pathology 18, 267–278.

    CAS  Google Scholar 

  • White, R.F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99, 410–412.

    PubMed  CAS  Google Scholar 

  • Wieringa-Brants, D.H. (1983). A model to simulate acquired resistance induced by localized virus infections in hypersensitive tobacco. Phytopathologische Zeitschrift 106, 369–372.

    Google Scholar 

  • Wilkins, P.W. & Catherall. P.L. (1974). The effect of some isolates of ryegrass mosaic virus on different genotypes of Lolium multiflorium. Annals of Applied Biology 76, 209–216.

    PubMed  CAS  Google Scholar 

  • Wu, J.H. (1964). Release of inhibited tobacco mosaic virus infection by ultraviolet irradiation as a function of time and temperature after inoculation. Virology 24, 441–445.

    PubMed  CAS  Google Scholar 

  • Yarwood, C.E. (1959). Virus susceptibility increased by soaking bean leaves in water. Plant Disease Reporter 43, 841–844.

    Google Scholar 

  • Yarwood, C.E. (1960). Localized acquired resistance to tobacco mosaic virus. Phytopathology 50, 741–744.

    Google Scholar 

  • Zaitlin, M. (1976). Viral cross protection: more understanding is needed Phytopathology 66, 382–383.

    Google Scholar 

  • Ziemiecki, A. & Wood, K.R. (1976). Proteins synthesised by cucumber cotyledons infected with two strains of cucumber mosaic virus. Journal of General Virology 31, 373–381.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Fraser, R.S.S. (1985). Mechanisms of Induced Resistance to Virus Disease. In: Fraser, R.S.S. (eds) Mechanisms of Resistance to Plant Diseases. Advances in Agricultural Biotechnology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5145-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5145-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8776-6

  • Online ISBN: 978-94-009-5145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics