Skip to main content

Mechanisms Involved in Genetically Controlled Resistance and Virulence: Virus Diseases

  • Chapter
Mechanisms of Resistance to Plant Diseases

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 17))

Abstract

Plants with heritable resistance to a virus normally affecting the species may display a wide variety of visible resistance phenotypes. Resistant plants can be entirely symptomless; can localize the virus in necrotic or chlorotic lesions, or can allow systemic spread of the virus but with reduced symptom expression. Virulent isolates of the virus, which overcome the specific resistance, can produce symptoms similar to those produced by common isolates on susceptible plants, or may be visibly different. In some cases, acquisition of virulence may be accompanied by other alterations in virus behaviour. The objectives of this Chapter are to discuss our present understanding of the physical, biochemical and physiological mechanisms involved in the action of resistance genes, and to consider the biochemical changes in viral functions which allow the virus to overcome a specific host resistance function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.B. & Wade, C.U. (1976). Aphid behaviour and host-plant preference demonstrated by electronic patterns of probing and feeding. American Potato Journal 53, 261–267.

    Google Scholar 

  • Aldwinckle, H.S. & Selman, I.W. (1967). Some effects of supplying benzyladenine to leaves and plants inoculated with viruses. Annals of Applied Biology 60, 49–58.

    CAS  Google Scholar 

  • Allison, R.V. & Shelia, T.A. (1964). The ultrastructure of local lesions induced by potato virus X: a sequence of cytological events in the course of infection. Phytopathology 54, 764–793.

    Google Scholar 

  • Amemiya, Y. & Misawa, T. (1977). Studies on the resistance of cucumber to cucumber mosaic virus. II. Induction of resistance by infection. Tokohu Journal of Agricultural Research 28, 18–25.

    Google Scholar 

  • Antignus, Y., Sela, I. & Harpaz, I. (1975). A phosphorus-containing fraction associated with antiviral activity in Nicotiana spp. carrying the gene for localization of TMV infection. Physiological Plant Pathology 6, 159–168.

    CAS  Google Scholar 

  • Antignus, Y., Sela, I. & Harpaz, I. (1977). Further studies on the biology of an antiviral factor (AVF) from virus infected plants and its association with the N-gene of Nicotiana species. Journal of General Virology 35, 107–116.

    PubMed  CAS  Google Scholar 

  • Antoniw, J.F. & Pierpoint, W.S. (1978). The purification and properties of one of the ‘b’ proteins from virus-infected tobacco plants. Journal of General Virology 39, 343–350.

    CAS  Google Scholar 

  • Antoniw, J.F., Ritter, C.E., Pierpoint, W.S. & Van Loon, L.C. (1980). Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. Journal of General Virology 47, 79–87.

    CAS  Google Scholar 

  • Antoniw, J.F., White, R.F. & Carr, J.P. (1984). An examination of the effect of human o-interferon on the infection and multiplication of tobacco mosaic virus in tobacco. Phytopathologische Zeitschrift 109, 367–371.

    CAS  Google Scholar 

  • Appiano, A., Pennazio, S., D’Agostino, G. & Redolfi, P. (1977). Fine structure of necrotic local lesions induced by tomato bushy stunt virus in Gomphrena globosa leaves. Physiological Plant Pathology 11, 327–332.

    Google Scholar 

  • Awasthi, L.P. (1981). The purification and nature of an antiviral protein from Cuscuta reflexa plants. Archives of Virology 70, 215–223.

    PubMed  CAS  Google Scholar 

  • Bailiss, K.W., Balazs, E. & Kiraly, Z. (1977). The role of ethylene and abscisic acid in TMV-induced symptoms in tobacco. Acta Phytopathologica Academiae Scientiarum Hungaricae 12, 133–140.

    CAS  Google Scholar 

  • Balazs, E., Barna, B. & Kiraly, Z. (1976). Effect of kinetin on lesion development and infection sites in Xanthi-nc tobacco infected with TMV: single cell local lesions. Acta Phytopathologica Academiae Scientiarum Hungaricae 11, 1–9.

    CAS  Google Scholar 

  • Balazs, E., Gaborjanyi, R. & Kiraly, Z. (1973). Leaf senescence and increased virus susceptibility in tobacco: the effect of abscisic acid. Physiological Plant Pathology 3, 341–346.

    CAS  Google Scholar 

  • Barbara, D.J. & Wood, K.R. (1972). Virus multiplication, peroxidase and polyphenoloxidase activity in leaves of two cucumber (Cucumis sativus L.) cultivars inoculated with cucumber mosaic virus. Physiological Plant Pathology 2, 167–172.

    CAS  Google Scholar 

  • Barbara, D.J. & Wood, K.R. (1974). The influence of actinomycin D on cucumber mosaic virus (strain W) multiplication in cucumber cultivars. Physiological Plant Pathology 4, 45–50.

    CAS  Google Scholar 

  • Barnett, A. & Wood, K.R. (1978). Influence of actinomycin D, ethephon, cycloheximide and chloramphenicol on the infection of a resistant and a susceptible cucumber cultivar with cucumber mosaic virus (Price’s No. 6 strain). Physiological Plant Pathology 12, 257–277.

    CAS  Google Scholar 

  • Bawden, F.C. (1964). ‘Plant Viruses and Virus Diseases’, 4th Edition. Ronald Press, New York.

    Google Scholar 

  • Bawden, F.C. & Pirie, N.W. (1959). The infectivity and inactivation of nucleic acid preparations from tobacco mosaic virus. Journal of General microbiology 21, 438–450.

    PubMed  CAS  Google Scholar 

  • Beachy, R.N. & Murakishi, H.H. (1973). Effect of cycloheximide on tobacco mosaic virus synthesis in callus from hypersensitive tobacco. Virology 55, 320–328.

    PubMed  CAS  Google Scholar 

  • Beier, H., Bruening, G., Russell, M.L. & Tucker, C.L. (1979). Replication of cowpea mosaic virus in protoplasts isolated from immune lines of cowpeas. Virology 95, 165–175.

    PubMed  CAS  Google Scholar 

  • Beier, H., Siler, D.J., Russell, M.L. & Bruening, G. (1977). Survey of susceptibility to cowpea mosaic virus among protoplasts and intact plants from Vigna sinensis lines. Phytopathology 67, 917–921.

    Google Scholar 

  • Boulton, M.I., Maule, A.J. & Wood, K.R. (1984). Effect of actinomycin D and UV irradiation on the replication of cucumber mosaic virus in protoplasts isolated from resistant and susceptible cucumber cultivars. Physiological Plant Pathology, in press.

    Google Scholar 

  • Brown, E.G. & Newton, R.P. (1981). Cyclic AMP and higher plants. Phytochemistry 20, 2453–2463. Carroll, T.W. (1966). Lesion development and distribution of tobacco mosaic virus in Datura stramonium. Phytopathology 56, 1348–1353.

    Google Scholar 

  • Carroll, T.W., Gossel, P.L. & Hackett, E.A. (1979). Inheritance of resistance to seed transmission of barley stripe mosaic virus in barley. Phytopathology 69, 431–433.

    Google Scholar 

  • Cayley, P.J., White, R.F., Antoniw, J.F., Walesby, N.J. & Kerr, I.M. (1982). Distribution of the ppp(A2’p) A-binding protein and interferon-related enzymes in animals, plants and lower organisms: Biochemical and Biophysical Research Communications 108, 1243–1250.

    CAS  Google Scholar 

  • Chadha, K.C. & MacNeill, B.H. (1969). An antiviral principle from tomatoes systemically infected with tobacco mosaic virus. Indian Journal of Botany 47, 513–518.

    Google Scholar 

  • Cirulli, M. & Alexander, L.J. (1969). Influence of temperature and strain of tobacco mosaic virus on resistance of tomato breeding lines derived from Lycopersicon peruvianum. Phytopathology 59, 1278–1297.

    Google Scholar 

  • Cohen, J. & Loebenstein, G. (1975). An electron microscope study of starch lesions in cucumber cotyledons infected with tobacco mosaic virus. Phytopathology 65, 32–39.

    Google Scholar 

  • Collendavelloo, J., Legrand, M. & Fritig, B. (1983). Plant disease and the regulation of enzymes involved in lignification. Plant Physiology 73, 550–554.

    PubMed  CAS  Google Scholar 

  • Coutts, R.H.R. (1978). Suppression of virus-induced local lesions in plasmolysed leaf tissue. Plant Science Letters 12, 77–85.

    CAS  Google Scholar 

  • Coutts, R.H.A. (1980). Virus induced local lesions on cowpea leaves: the role of the epidermis and the effects of kinetin. Phytopathologische Zeitschrift 97, 307–316.

    CAS  Google Scholar 

  • Coutts, R.H.A. & Wood, K.R. (1977). Inoculation of leaf mesophyll protoplasts from a resistant and a susceptible cucumber cultivar with cucumber mosaic virus. FEMS Microbiology Letters 1, 121–124.

    Google Scholar 

  • Cruikshank, I.A.M., & Perrin, D.R. (1964). Pathological functions of phenolic compounds in plants. In ‘Biochemistry of Phenolic Compounds’ (J.8. Harborne, ed.), pp. 511–544. Academic Press, New York.

    Google Scholar 

  • Darby, L.A., Ritchie, D.8. & Taylor, I.B. (1978). Isogenic lines of the tomato ‘Ailsa Craig’. Report of the Glasshouse Crops Research Institute for 1977, pp. 168–184.

    Google Scholar 

  • Dawson, G.W., Gibson, R.W., Griffiths, D.C., Pickett, J.A., Rice, A.D. & Woodcock, C.M. (1982). Aphid alarm pheromone derivatives affecting settling and transmission of plant viruses. Journal of Chemical Ecology 8, 1377–1387.

    CAS  Google Scholar 

  • Dawson, J.R.O. (1965). Contrasting effects of resistant and susceptible tomato plants on tomato mosaic virus multiplication. Annals of Applied Biology 56, 485–491.

    Google Scholar 

  • Dawson, J.R.O., Rees, M.W. & Short, M.N. (1975). Protein composition of unusual tobacco mosaic virus strains. Annals of Applied Biology 79, 189–194.

    PubMed  CAS  Google Scholar 

  • Dawson, J.R.O., Rees, M.W. & Short, M.N. (1979). Lack of correlation between the coat protein composition of tobacco mosaic virus isolates and their ability to infect resistant tomato plants. Annals of Applied Biology 91, 353–358.

    CAS  Google Scholar 

  • Day, K.L. (1984). Resistance to bean common mosaic virus in Phaseolus vulgaris L. Ph. D. Thesis, University of Birmingham, U.K.

    Google Scholar 

  • De Jager, C.P. & Van Kampen, A. (1970). The relationship between the components of cowpea mosaic virus. III. Location of genetic information for two biological functions in the middle component of CPMV. Virology 41, 281–287.

    PubMed  Google Scholar 

  • De Jager, C.P. & Wesseling, J.B.M. (1981). Spontaneous mutations in cowpea mosaic virus overcoming resistance due to hypersensitivity in cowpea. Physiological Plant Pathology 19, 347–358.

    Google Scholar 

  • De Laat, A.R.M. & Van Loon, L.C. (1982). Regulation of ethylene biosynthesis in virus-infected tobacco leaves. II. Time course of levels of intermediates and in vivo conversion rates. Plant Physiology 69, 240–245.

    PubMed  Google Scholar 

  • De Laat, R.A.M., Van Loon, L.C. & Vonk, C.R. (1981). Regulation of ethylene biosynthesis in virus-infected tobacco leaves. I. Determination of the role of methionine as the precursor of ethylene. Plant Physiology 68, 256–261.

    PubMed  Google Scholar 

  • Devash, Y., Hauschner, A., Sela, I. & Chakraburtty, K. (1981). The antiviral factor (AVF) from virus-infected plants induces discharge of histidinyl-TMV-RNA. Virology 111, 103–112.

    PubMed  CAS  Google Scholar 

  • Drijfhout, E. (1978). Genetic interaction between Phaseolus vulgaris and bean common mosaic virus with implications for strain identification and breeding for resistance. Agricultural Research Report 872, Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  • Duchesne, M., Fritig, 8. & Hirth, L. (1977). Phenylalanine ammonia-lyase in tobacco mosaic virus-infected hypersensitive tobacco. Density labelling evidence of da nova synthesis. Biochimica et Biophysica Acts 485, 465–481.

    CAS  Google Scholar 

  • Ekpo, E.J.A. & Saettler, A.W. (1975). Multiplication and distribution of bean common mosaic virus in Phaseolus vulgaris. Plant Disease Reporter 59, 939–943.

    Google Scholar 

  • Ellis, R. J. (1981). Inhibitors for studying chloroplast transcription and translation in vivo. In ‘Methods in Chloroplast Molecular Biology (Edelman, M., Hallick, R.B. & Chua, N.-H., eds), pp. 559–564. Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Evans, D.M.A. (1982). RNA-dependent RNA polymerases in tomato (Lycopersicon esculentum Mill.). Ph. D. Thesis, University College, Cardiff.

    Google Scholar 

  • Evans, D.M.A., Bryant, J.A. & Fraser, R.S.S. (1984). Characterization of RNA-dependent RNA polymerases in healthy and tobacco mosaic virus-infected plants. Annals of Botany 54, 271–281.

    CAS  Google Scholar 

  • Faccioli, G. & Capponi, R. (1983). An antiviral factor present in plants of Chenopodium amaranticolor locally infected by tobacco necrosis virus. 1. Extraction, partial purification, biological and chemical properties. Phytopathologische Zeitschrift 106, 289–301.

    CAS  Google Scholar 

  • Farkas, G.L., Kiraly, Z. & Solymosy, F. (1960). Role of oxidative metabolism in the localization of plant viruses. Virology 12, 408–421.

    PubMed  CAS  Google Scholar 

  • Faulkner, G. & Kimmins, W.C. (1975). Staining reactions to the tissue bordering virus lesions induced by wounding, tobacco mosaic virus and tobacco necrosis virus in bean. Phytopathology 65, 1396–1400.

    Google Scholar 

  • Faulkner, G. & Kimmins, W.C. (1978). Fine structure of tissue bordering lesions induced by wounding and virus infection. Canadian Journal of Botany 56, 2990–2999.

    Google Scholar 

  • Favali, M.A., Conti, G.G. & Bassi, M. (1978). Modifications of the vascular bundle ultrastructure in the “resistance zone” around necrotic lesions induced by tobacco mosaic virus. Physiological Plant Pathology 13, 247–251.

    Google Scholar 

  • Fraser, R.S.S. (1972). Effects of two strains of tobacco mosaic virus on growth and RNA content of tobacco leaves. Virology 47, 261–269.

    PubMed  CAS  Google Scholar 

  • Fraser, R.S.S. (1979). Systemic consequences of the local lesion reaction to tobacco mosaic virus in a tobacco variety lacking the N gene for hypersensitivity. Physiological Plant Pathology 14, 383–394.

    Google Scholar 

  • Fraser, R.S.S. (1981). Evidence for the occurrence of the pathogenesis-related proteins in leaves of healthy tobacco plants during flowering. Physiological Plant Pathology 19, 69–76.

    CAS  Google Scholar 

  • Fraser, R.S.S. (1982). Are ‘pathogenesis-related’ proteins involved in acquired systemic resistance of tobacco plants to tobacco mosaic virus? Journal of General Virology 58, 305–313.

    CAS  Google Scholar 

  • Fraser, R.S.S. (1983). Varying effectiveness of the N’ gene for resistance to tobacco mosaic virus in tobacco infected with virus strains differing in coat protein properties. Physiological Plant Pathology 22, 109–119.

    Google Scholar 

  • Fraser, R.S.S. & Airey, M.J. (1980). Resistance to tobacco mosaic virus in tomato: resistance gene Tm-2. Report of the National Vegetable Research Station for 1979, p.21.

    Google Scholar 

  • Fraser, R.S.S., Gerwitz, A., Loughlin, S.A.R. & Leary, J.A. (1983). Resistance to tobacco mosaic virus in tomato plants. Report of the National Vegetable Research Station for 1982, pp. 18–19.

    Google Scholar 

  • Fraser, R.S.S. & Loughlin, S.A.R. (1980). Resistance to tobacco mosaic virus in tomato: effects of the Tm-1 gene on virus multiplication. Journal of General Virology 48, 87–96.

    CAS  Google Scholar 

  • Fraser, R.S.S. & Loughlin, S.R.R. (1982). Effects of temperature on the Tm-1 gene for resistance to tobacco mosaic virus in tomato. Physiological Plant Pathology 20, 109–117.

    CAS  Google Scholar 

  • Fraser, R.S.S., Thomas, C.J.R., Gerwitz, A. & Payne, J.A. (1984). Resistance to tobacco mosaic virus in tomato. Report of the National Vegetable Research Station for 1983, pp. 22–23.

    Google Scholar 

  • Fraser, R.S.S. & Whenham, R.J. (1982). Plant growth regulators and virus infection: a critical review. Plant Growth Regulation 1, 37–59.

    CAS  Google Scholar 

  • Fritig, O., Gosse, J., Legrand, M. & Hirth, L. (1973). Changes in phenylalanirre ammonia lyase during the hypersensitive reaction of tobacco to TMV. Virology 55, 371–379.

    PubMed  CAS  Google Scholar 

  • Fritig, B., Legrand, M. & Hirth, L. (1972). Changes in the metabolism of phenolic compounds during the hypersensitive reaction of tobacco to TMV. Virology 47, 845–848.

    PubMed  CAS  Google Scholar 

  • Fry, P.R. & Matthews, R.E.F. (1963). Timing of some early events following inoculation with tobacco mosaic virus. Virology 19, 461–469.

    PubMed  CAS  Google Scholar 

  • Gaborjanyi, R., Balazs, E. & Kiraly, Z. (1971). Ethylene production, tissue senescence and local virus infection. Rota Phytopathologica Academiae Scientiarum Hungaricae 6, 51–55.

    CAS  Google Scholar 

  • Gat-Edelbaum, O., Altman, A. & Sala, T. (1983). Polyinosinic:polycytidylic acid in association with cyclic nucleotides activates the antiviral factor AVF in plant tissues. Journal of 189 General Virology 64, 211–214.

    CAS  Google Scholar 

  • Gera, A., Loebenstein, G. & Shabtai, S. (1983). Enhanced tobacco mosaic virus production and suppressed synthesis of a virus inhibitor in protoplasts exposed to antibiotics. Virology 127, 475–478.

    PubMed  CAS  Google Scholar 

  • Gianinazzi, S. (1982). Antiviral agents and inducers of virus resistance: analogies with interferon. In ‘Active Defense mechanisms in Plants’ (Wood, R.K.S., ed.), pp. 275–298. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Gianinazzi, S., Martin, C & Valee, J.-C. (1970). Hypersensibilite aux virus, temperature et proteines solubles chez le Nicotiana Xanthi n.c. Apparition de nouvelles macromolecules lors de la repression de la synthese virale. Compte rendu hebdomadaire des seances de l’Academie des Sciences de Paris 270, 2383–2386.

    CAS  Google Scholar 

  • Gibson, R.W. & Pickett, J.A. (1983). Wild potato repels aphids by release of aphid alarm pheromone. Nature 302, 608–609.

    CAS  Google Scholar 

  • Gibson, R.W. & Plumb, R.T. (1977). Breeding for resistance to aphid infestation. In ‘Aphids as Virus Vectors’ (Harris, K.F. & maramorosch, K., eds), pp. 473–500. Academic Press, New York and London.

    Google Scholar 

  • Graca, J.V. da, & Martin, N.M. (1975). Ultrastructural changes in tobacco mosaic virus-induced local lesions in Nicotiana tabacum L. cv. “Samsun NN”. Physiological Plant Pathology 7, 287–291.

    Google Scholar 

  • Graca, J.V. da & Martin, N.M. (1976). An electron microscope study of hypersensitive tobacco infected with tobacco mosaic virus at 32° C. Physiological Plant Pathology 8, 215–219.

    Google Scholar 

  • Gulyas, A. & Farkas, G.L. (1978). Is cell to cell contact necessary for the expression of the N-gene in Nicotiana tabacum cv Xanthi nc plants infected by TMV? Phytopathologische Zeitschrift 91, 182–187.

    Google Scholar 

  • Haberbosch, H., Nitschko, H., Strasser, R. & Mundry, K.W. (1981). Single lesion growth kinetics and early necrotic events in TMV-inoculated Nicotiana tabacum Xanthi nc leaves. Abstracts of the 5th International Congress of Virology, Strasbourg, p. 263.

    Google Scholar 

  • Hall, T.J. (1980). Resistance at the Tm-2 locus in tomato to tomato mosaic virus. Euphytica 29, 189–197.

    Google Scholar 

  • Hanada, K. & Harrison, B.D. (1977). Effects of virus genotype and temperature on seed transmission of nepoviruses. Annals of Applied Biology 85, 79–92.

    Google Scholar 

  • Hariharasubramanian, V., Hadidi, A., Singer, B. & Fraenkel-Conrat, H. (1973). Possible identification of a protein in brome mosaic virus-infected barley as a component of viral RNA polymerase. Virology 54, 190–198.

    PubMed  CAS  Google Scholar 

  • Hayashi, T. & Matsui, C. (1965). Fine structure of lesion periphery produced by tobacco mosaic virus. Phytopathology 55, 387–392.

    PubMed  CAS  Google Scholar 

  • Hiruki, C. & Tu, J.C. (1972). Light and electron microscopy of potato virus M lesions and marginal tissue in red kidney bean. Phytopathology 62, 77–85.

    Google Scholar 

  • Hodgson, C.J. (1981). Effects of infection with cabbage black ringspot strain or turnip mosaic virus on turnip as a host to myzus persicae and Brevicoryne brassicae. Annals of Applied Biology 98, 1–14.

    Google Scholar 

  • Holmes, F.O. (1938). Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology 28, 553–561.

    Google Scholar 

  • Holmes, F.O. (1961). Concomitant inheritance of resistance to several virus diseases in tobacco. Virology 13, 409–413.

    PubMed  CAS  Google Scholar 

  • Holmes, F.O. (1965). Genetics of pathogenicity in viruses and of resistance in host plants. Advances in Virus Research 11, 139–161.

    PubMed  CAS  Google Scholar 

  • Hooker, W.J. & Kim, W.S. (1962). Inhibitors of potato virus X in potato leaves with different types of virus resistance. Phytopathology 52, 688–693.

    Google Scholar 

  • Hooley, R. & McCarthy, D. (1980). Extracts from virus infected hypersensitive tobacco leaves are detrimental to protoplast survival. Physiological Plant Pathology 16, 25–38.

    Google Scholar 

  • Israel, H.W. & Ross, R.F. (1967). The fine structure of local lesions induced by tobacco mosaic virus in tobacco. Virology 33, 272–286.

    PubMed  CAS  Google Scholar 

  • Kado, C.I. & Knight, C.A. (1966). Location of a local lesion gene in tobacco mosaic virus RNA. Proceedings of the National Academy of Sciences of the U.S.R. 55, 1276–1283.

    CAS  Google Scholar 

  • Kalpagam, C., Foglein, F.J., Nyitrai, A., Premecz, G. & Farkas, G.L. (1977). Expression of the N gene in plasmolysed leaf tissues and isolated protoplasts of Nicotiana tabacum cv Xanthi nc infected by T8V. In Current Topics in Plant Pathology (Kiraly, Z., ed.), pp. 395–398. Akademiai Kiado, Budapest.

    Google Scholar 

  • Karchi, Z., Cohen, S. & Govers, A. (1975). Inheritance of resistance to cucumber mosaic virus in melons. Phytopathology 65, 479–481.

    Google Scholar 

  • Kasamo, K. & Shimomura, T. (1977). The role of the epidermis in local lesion formation and the multiplication of tobaco mosaic virus and its relation to kinetln. Virology 76, 12–18.

    PubMed  CAS  Google Scholar 

  • Kasamo, K. & Shimomura, T. (1978). Response of membrane-bound Mg2+-activated ATPase of tobacco leaves to tobacco mosaic virus. Plant Physiology 62, 731–734.

    PubMed  CAS  Google Scholar 

  • Kasamo, K. & Shimomura, T. (1982). Interaction between tobacco mosaic virus and the plasma membrane of tobacco leaf cells in early infection processes. Effect of Gramicidin S and cold osmotic shock. Plant Science Letters 27, 255–264.

    CAS  Google Scholar 

  • Kassanis, B., Gianinazzi. S. & White, R.F. (1974). A possible explanation of the resistance of virus-infected tobacco plants to second infection. Journal of General Virology 23, 11–16.

    Google Scholar 

  • Kim, K.S. (1970). Subcellular responses to localized infection of Chenopodium quinoa by pokeweed mosaic virus. Virology 41, 179–183.

    PubMed  CAS  Google Scholar 

  • Kimmins, W.C. (1969). Isolation of a virus inhibitor from plants with localized infections. Canadian Journal of Botany 47, 1879–1886.

    CAS  Google Scholar 

  • Konate, G., Kopp, M. & Fritig, B. (1983). Studies an T8V multiplication in systemically and hypersensitively reacting tobacco varieties by means of radiochemical and immunoenzymatic methods. Agronomie 3, 95.

    Google Scholar 

  • Kooistra, E. (1968). Significance of the non-appearance of visible disease symptoms in cucumber (Cucumis sativus L.) after infection with cucumber virus 2. Euphytica 17, 136–140.

    Google Scholar 

  • Kopp, M., Geoffroy, P. & Fritig, B. (1979). Phenylalanine ammonia-lyase levels in protoplasts isolated from hypersensitive tobacco pre-infected with tobacco mosaic virus. Planta 146, 451–457.

    CAS  Google Scholar 

  • Kuhn, C.W. (1971). Cowpea chlorotic mottle virus local lesion area and infectivity increased by 2-thiouracil. Virology 43, 101–109.

    PubMed  CAS  Google Scholar 

  • Lane, L.C. (1981). Bromoviruses. In ‘Handbook of Plant Virus Infection: Comparative Diagnosis’ (Kurstak, E., ed.), pp. 333–376. Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Lecoq, H., Cohen, S., Pitrat, 8. & Labonne, G. (1979). Resistance to cucumber mosaic virus transmission by aphids in Cucumis melo. Phytopathology 69, 1223–1225.

    Google Scholar 

  • Lecoq, H., Labonne, G. & Pitrat, M. (1980). Specificity of resistance to virus transmission by aphids in Cucumis melo. Annales de Phytopathologie 12, 139–144.

    Google Scholar 

  • Legrande, O., Fritig, B. & Hirth, L. (1976). Enzymes of the phenylpropanoid pathway and the necrotic reaction of hypersensitive tobacco to tobacco mosaic virus. Phytochemistry 15, 1353–1359.

    Google Scholar 

  • Legrand, M., Fritig, B. & Hirth, L. (1978). o-Diphenol O-methyltransferases of healthy and tobacco-mosaic-virus-infected hypersensitive tobacco. Planta 144, 101–108.

    CAS  Google Scholar 

  • Levy, A., Loebenstein, G., Smookler, 0. & Drovi, T. (1974). Partial suppression by uv irradiation of the mechanism of resistance to cucumber mosaic virus in a resistant cucumber cultivar. Virology 60, 37–44.

    CAS  Google Scholar 

  • Lieberman, M. (1979). Biosynthesis and action of ethylene. Annual Review of Plant Physiology 30, 533–591.

    CAS  Google Scholar 

  • Loebenstein, G., Chazan, R. & Eisenberg, M. (1970). Partial suppression of the localizing mechanism to tobacco mosaic virus by uv irradiation. Virology 41, 373–376.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G. & Gera, A. (1981). Inhibitor of virus replication released from tobacco mosaic virus-infected protoplasts of a local lesion-responding tobacco cultivar. Virology 114, 132–139.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G., Gera, A., Barnett, A., Shabtai, S & Cohen, J. (1980). Effect of2,4-dichlorophenoxyacetic acid on multiplication of TOV in protoplasts from local lesion and systemic responding hosts. Virology 100, 110–115.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G. & Ross, A.F. (1963). An extractable agent, induced in uninfected tissues by localized virus infections, that interferes with infection by tobacco mosaic virus. Virology 20, 507–517.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G., Sela, I & Van Praagh, T. (1969). Increase of tobacco mosaic virus local lesion size and virus multiplication in hypersensitive hosts in the presence of Actinomycin-D. Virology 37, 42–48.

    PubMed  CAS  Google Scholar 

  • Loebenstein, G, Spiegel, S & Gera, A. (1982). Localized resistance and barrier substances. In ‘Active Defense Mechanisms in Plants’ (Wood, R.K.S., ed.), pp. 211–230. Plenum Publishing Corporation, New York.

    Google Scholar 

  • McRitchie, J.J. & Alexander, L.J. (1963). Host-specific Lycopersicon strains of tobacco mosaic virus. Phytopathology 53, 394–398.

    Google Scholar 

  • Martin, C. & Martin-Tanguy, J. (1981). Polyamines conjuguees et limitation de l’expansion virale chez les vegetaux. Compte rendu hebdomadaire des seances de l’Academie des Sciences de Paris 293, 249–251.

    Google Scholar 

  • Martin-Tanguy, J., Martin, C., Gallet, M. & Vernoy, R. (1976). Sur de puissants inhibiteurs naturels de multiplication du virus de la mosaique du tabac. Compte rendu hebdomadaire des seances de l’Academie des Sciences de Paris 282, 2231–2234.

    CAS  Google Scholar 

  • Massala, R., Legrande, M. & Fritig, B. (1980). Effect of oc-aminoacetate, a competitive inhibitor of phenylalanine ammonia-lyase, on the hypersensitive resistance of tobacco to tobacco mosaic virus. Physiological Plant Pathology 16, 213–226.

    CAS  Google Scholar 

  • Maule, A.J., Boulton, N.I. & Wood, K.R. (1980). Resistance of cucumber protoplasts to cucumber mosaic virus: a comparative study. Journal of General Virology 51, 271–279.

    CAS  Google Scholar 

  • Milne, R.G. (1966). Electron microscopy of tobacco mosaic virus in leaves of Nicotiana qlutinosa. Virology 28, 527–532.

    PubMed  CAS  Google Scholar 

  • Milo, G.E. & Srivastava, B.I.S. (1969). Effects of cytokinin on tobacco mosaic virus producti^n in local lesion and systemic hosts. Virology 38, 26–31.

    PubMed  CAS  Google Scholar 

  • Motoyoshi, F. & Oshima, N. (1975). Infection with tobacco mosaic virus of leaf mesophyll protoplasts from susceptible and resistant lines of tomato. Journal of General Virology 29, 81–91.

    Google Scholar 

  • Motoyoshi, F. & Oshima, N. (1977). Expression of genetically controlled resistance to tobacco mosaic virus infection in isolated tomato leaf mesophyll protoplasts. Journal of General Virology 34, 499–506.

    Google Scholar 

  • Motoyoshi, F. & Oshima, N. (1979). Standardization in inoculation procedure and effect of a resistance gene on infection of tomato protoplasts with tobacco mosaic virus RNA. Journal of General Virology 44, 801–806.

    CAS  Google Scholar 

  • Mozes, R., Antignus, Y., Sela, I & Harpaz, I. (1978). The chemical nature of an antiviral factor (AVF) from virus-infected plants. Journal of General Virology 38, 241–249.

    CAS  Google Scholar 

  • Murant, A.F. (1978). Recent studies on association of two plant virus complexes with aphid vectors. In ‘Plant Disease Epidemiology’ (Scott, P.R. & Bainbridge, A., eds), pp 243–249. Blackwell, Oxford.

    Google Scholar 

  • Nachman, I., Loebenstein, G., van Praagh, T. & Zelcher, A. (1971). Increased multiplication of cucumber mosaic virus in a resistant cucumber cultivar caused by actinomycin D. Physiological Plant Pathology 1, 67–71.

    CAS  Google Scholar 

  • Nagaich, B.B. & Singh, S. (1970). An antiviral principle induced by potato virus X inoculation in Capsicum pendulum Willd. Virology 40, 267–271.

    PubMed  CAS  Google Scholar 

  • Nault, L.R. & Montgomery, M.E. (1977). Aphid pheromones. In ‘Aphids as virus vectors (Harris, K.F. & Maramorosch, K., eds), pp. 528–546. Academic Press, New York and London.

    Google Scholar 

  • Nienhaus, F. & Janicka-Czarnecka, I. (1981). Investigations on an extractable induced antiviral principle (AVP) in systemically diseased Phaseolus vulgaris upon tobacco mosaic virus infection. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz 88, 577–583.

    Google Scholar 

  • Nishiguchi, M., Motoyoshi, F. & Oshima, N. (1978). Behaviour of a temperature-sensitive strain of tobacco mosaic virus in tomato leaves and protoplasts. Journal of General Virology 39, 53–62.

    Google Scholar 

  • Ohashi, Y. & Shimomura, T. (1972). Induction of localised necrotic lesions by actinomycin D on leaves systemically infected with tobacco mosaic virus. Virology 48, 601–603.

    CAS  Google Scholar 

  • Ohashi, Y. & Shimomura, T. (1982). Modification of cell membranes of leaves systemically infected with tobacco mosaic virus. Physiological Plant Pathology 20, 125–128.

    CAS  Google Scholar 

  • Ohno, T., Takamatsu, N., Meshi, T., Okada, Y., Nishiguchi, M. & Kiho, Y. (1983). Single amino acid substitution in 30K protein of TMV defective in transport function. Virology 131, 255–258.

    PubMed  CAS  Google Scholar 

  • Orchansky, P., Rubinstein, M. & Sela, I. (1982). Human interferons protect plants from virus infection. Proceedings of the National Academy of Sciences of the U.S.A. 79, 2278–2280.

    CAS  Google Scholar 

  • Otsuki, Y., Shimomura, T. & Takebe, I. (1972). Tobacco mosaic virus multiplication and expression of the N gene in necrotic responding tobacco varieties. Virology 50, 45–50.

    CAS  Google Scholar 

  • Owens, R.R., Bruening, G. & Shepherd, R.J. (1973). A possible mechanism for inhibition of plant viruses by a peptide from Phytolacca americana. Virology 56, 390–393.

    PubMed  CAS  Google Scholar 

  • Parish, C.L., Zaitlin, M. & Siegel, A. (1965), A study of necrotic lesion formation by tobacco mosaic virus. Virology 26, 413–418.

    PubMed  CAS  Google Scholar 

  • Pavillard, J. (1952). Researches sur la croissance des plantes virosees; virus et auxines. Compte rendu hebdomadaire des seances de l’Academie des Sciences de Paris 235, 87–88. Pelham, J. (1966). Resistance in tomato to tobacco mosaic virus. Euphytica 15, 258–267.

    Google Scholar 

  • Pelham, J. (1972). Strain-genotype interaction of tobacco mosaic virus in tomato. Annals of Applied Biology 71, 219–228.

    Google Scholar 

  • Pennazio, S., D’Agostino, G., Appiano, A. & Redolfi, P. (1978). Ultrastructure and histochemistry of the resistant tissue surrounding lesions of tomato bushy stunt virus in Gomphrena globose leaves. Physiological Plant Pathology 13, 165–171.

    Google Scholar 

  • Pennazio, S., Appiano, A. & Redolfi, P. (1979). Changes occurring in Gomphrena globose leaves in advance of the appearance of tomato bushy stunt virus necrotic local lesions. Physiological Plant Pathology 15, 177–182.

    Google Scholar 

  • Pennazio, S., Redolfi, P. & Sapetti, C. (1981). Callose formation and permeability changes during the partly localized reaction of Gomphrena globose to potato virus X. Phytopathologische Zeitschrift 100, 172–191.

    Google Scholar 

  • Pennazio, S. & Sapetti, C. (1982). Electrolyte leakage in relation to viral and abiotic stresses inducing necrosis in cowpea leaves. Biologia Plantarum 24, 218–225.

    CAS  Google Scholar 

  • Pierpoint, W.S. (1983). Is there a phytointerferon7 Trends in Biochemical Sciences 8, 5–7.

    Google Scholar 

  • Pierpoint, W.S., Robinson, N.P. & Leeson, M.B. (1981). The pathogenesis-related proteins of tobacco: their induction by viruses in intact plants and their induction by chemicals in detached leaves. Physiological Plant Pathology 19, 85–97.

    CAS  Google Scholar 

  • Pitrat, M. & Lecoq, H. (1980). Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology 70, 958–961.

    Google Scholar 

  • Pritchard, D.W. & Ross, A.F. (1975). The relationship of ethylene to formation of tobacco mosaic virus lesions in hypersensitive responding tobacco leaves with and without induced resistance. Virology 64, 295–307.

    PubMed  CAS  Google Scholar 

  • Rappaport, I & Wildman, S.G. (1957). A kinetic study of local lesion growth on Nicotiana qlutinosa resulting from tobacco mosaic virus infection. Virology 4, 265–274.

    PubMed  CAS  Google Scholar 

  • Reanney, D.C. (1982). The evolution of RNA viruses. Annual Review of microbiology 36, 47–73. Redolfi, P. (1983). Occurrence of pathogenesis-related (b) and similar proteins in different plant species. Netherlands Journal of Plant Pathology 89, 245–254.

    Google Scholar 

  • Reichman, m., Devash, Y., Suhadolnik, R.J. & Sela, I. (1983). Human leukocyte interferon and the antiviral factor (AVF) from virus-infected plants stimulate plant tissues to produce nucleotides with antiviral activity. Virology 128, 240–244.

    PubMed  CAS  Google Scholar 

  • Rochow, W.F. (1982). Dependent transmission by aphids of barley yellow dwarf luteoviruses from mixed infections. Phytopathology 72, 302–305.

    Google Scholar 

  • Roosien, J., Sarachu, A.N., Alblas, F. & Van Vloten-Doting, L. (1983). An alfalfa mosaic virus RNA-2 mutant which does not induce a hypersensitive reaction in cowpea plants, is multiplied to a high concentration in cowpea protoplasts. Plant molecular Biology 2, 85–88.

    CAS  Google Scholar 

  • Ross, A.F. & Israel, H.W. (1970). Use of heat treatments in the study of acquired resistance to tobacco mosaic virus in hypersensitive tobacco. Phytopathology 60, 755–770.

    Google Scholar 

  • Russo, m., martelli, G.P. & Franco, A. Di (1981). The fine structure of local lesions of beet necrotic yellow vein virus in Chenopodium amaranticolor. Physiological Plant Pathology 19, 237–242.

    Google Scholar 

  • Ruzicska, P., Gombos, Z. & Farkas, G.L. (1983). modification of the fatty acid composition of phospholipids during the hypersensitive reaction in tobacco. Virology 128, 60–64.

    CAS  Google Scholar 

  • Sakai, F. & Takebe, I. (1974). Protein synthesis in tobacco mesophyll protoplasts induced by tobacco mosaic virus infection. Virology 62, 426–433.

    PubMed  CAS  Google Scholar 

  • Schuster, G. & Wetzler, C. (1982). On virus-induced inhibitors from locally TMV-infected plants of Nicotiana glutinosa L. Phytopathologische Zeitschrift 104, 46–59.

    CAS  Google Scholar 

  • Sala, I. (1981). Plant-virus interactions related to resistance and localization of viral infections. Advances in Virus Research 26, 201–238.

    Google Scholar 

  • Selo, I & Applebaum, S.W. (1962). Occurrence of antiviral factor in virus-infected plants. Virology 17, 543–548.

    Google Scholar 

  • Selo, I. & Harpaz, I. (1977). Further studies on the biology of an antiviral factor (AVF) from virus infected plants and its association with the N-gene of Nicotiana species. Journal of General Virology 35, 107–116.

    Google Scholar 

  • Sela, I., Harpaz, I. & Birk, Y. (1964). Separation of a highly active antiviral factor from virus-infected plants. Virology 22, 446–451.

    PubMed  CAS  Google Scholar 

  • Sela, I., Harpaz, I. & Birk, Y. (1966). Identification of the active component of an antiviral factor isolated from virus-infected plants. Virology 28, 71–78.

    PubMed  CAS  Google Scholar 

  • Sela, I., Hauschner, A. & Mozes, R. (1978). The mechanism of stimulation of the antiviral factor (AVF) in Nicotiana leaves. The involvement of phosphorylation and the role of the N-gene. Virology 89, 1–6.

    PubMed  CAS  Google Scholar 

  • Seim, S., Loebenstein, G. & Van Praagh, T. (1969). Increase of tobacco mosaic virus multiplication and lesion size in hypersensitive hosts in the presence of chloramphenicol. Virology 39, 260–264.

    Google Scholar 

  • Selman, I.W. (1964). The effects of kinetin on infection of petunia and tomato leaves with tomato spotted wilt virus. Annals of Applied Biology 53, 67–76.

    CAS  Google Scholar 

  • Selman, I.W. & Yahampath, A.C.I. (1973). Some physiological characteristics of two tomato cultivars, one tolerant and one susceptible to tobacco mosaic virus. Annals of Botany 37, 853–865.

    CAS  Google Scholar 

  • Shimomura, T. (1971). Necrosis and localization of infection in local lesion hosts. Phytopathologische Zeitschrift 70, 185–196.

    Google Scholar 

  • Shimomura, T. (1977). The role of the epidermis in local lesion formation on Nicotiana glutinosa leaves caused by tobacco mosaic virus. Annals of the Phytopathological Society of Japan 43, 159–166.

    Google Scholar 

  • Shimomura, T. & Dijkstra, J. (1975). The occurrence of callose during the process of local lesion formation. Netherlands Journal of Plant Pathology 81, 107–121.

    Google Scholar 

  • Sill, W.H. & Walker, J.C. (1952). A virus inhibitor in cucumber in relation to mosaic resistance. Phytopathology 42, 349–352.

    Google Scholar 

  • Simons, T.J., Israel, H.W. & Ross, A.F. (1972). Effect of 2,4 dichlorophenoxyacetic acid on tobacco mosaic virus lesions and on the fine structure of the adjacent cells. Virology 48, 502–515.

    PubMed  CAS  Google Scholar 

  • Solymosy, F. & Farkas, G.L. (1962). Simultaneous activation of pentose-phosphate shunt enzymes in a virus-infected local lesion host plant. Nature 195, 835.

    PubMed  CAS  Google Scholar 

  • Solymosy, F. & Farkas, G.L. (1963). Metabolic characteristics at the enzymatic levels of tobacco tissues exhibiting localized acquired resistance to viral infection. Virology 21, 210–221.

    Google Scholar 

  • Solymosy, F., Szirmai, J., Beczner, L. & Farkas, G.L. (1967). Changes in peroxidase isozyme patterns induced by virus infection. Virology 32, 117–121.

    PubMed  CAS  Google Scholar 

  • Spencer, D.F. & Kimmins, W.C. (1971). Ultrastructure of tobacco mosaic virus lesions and surrounding tissue in Phaseolus vulgaris var Pinto.

    Google Scholar 

  • Stobbs, L.W., Mancha, N.S. & Dias, H.F. (1977). Histological changes associated with virus localization in TMV-infected Pinto bean leaves. Physiological Plant Pathology 11, 87–94.

    Google Scholar 

  • Sulzinski, N.A. & Zaitlin, M. (1982). Tobacco mosaic virus replication in resistant and susceptible plants: in some resistant species virus is confined to a small number of initially infected cells. Virology 121, 12–19.

    PubMed  CAS  Google Scholar 

  • Sunderland, D.W. & Merrett, M.J. (1964). Adenosine diphosphate and adenosine triphosphate concentrations in leaves showing necrotic local virus lesions. Virology 23, 274–276.

    PubMed  CAS  Google Scholar 

  • Sunderland, D.W. & Merrett, M.J. (1965). The respiration of leaves showing necrotic local lesions following infection by tobacco mosaic virus. Annals of Applied Biology 56, 477–484.

    Google Scholar 

  • Sziraki, I. & Balazs, E. (1975). The effect of infection by TMV on cytokinin level of tobacco plants, and cytokinins in TMV RNA. In ‘Current Topics in Plant Pathology’ (Kiraly, Z., ed.), pp. 345–352. Akademiai Kiado, Budapest.

    Google Scholar 

  • Sziraki, I., Balazs, E. & Kiraly, Z. (1980). Role of different stresses in inducing systemic acquired resistance to TMV and increasing cytokinin levels in tobacco. Physiological Plant Pathology 16, 277–284.

    CAS  Google Scholar 

  • Sziraki, I & Gaborjanyi, R. (1974). Effect of systemic TMV infection on cytokinin level of tobacco leaves and stems. Acta Phytopathologica Academiae Scientiarum Hungaricae 9, 195–199.

    CAS  Google Scholar 

  • Takahashi, T. (1973). Studies on viral pathogenesis in plant hosts. IV. Comparison of early process of tobacco mosaic virus infection in the leaves of ‘Samsun NN’ and ‘Samsun’ tobacco plants. Phytopathologische Zeitshrift 77, 157–168.

    Google Scholar 

  • Takahashi, T. (1974). Studies on viral pathogenesis in plant hosts: VI. The rate of primary lesion growth in the leaves of Samsun NN tobacco to tobacco mosaic virus. Phytopathologische Zeitschrift 79, 53–66.

    Google Scholar 

  • Takusari, H. & Takahashi, T. (1979). Studies on viral pathogenesis in plant hosts. IX. Effect of citrinin on the formation of necrotic lesions and virus localization in the leaves of ‘Samsun NN’ tobacco plants after tobacco mosaic virus infection. Phytopathologische Zeitshrift 96, 324–329.

    CAS  Google Scholar 

  • Taliansky, N.E., Malyshenko,, S.I., Pshennikova, E.S. & Atabekov, J.G. (1982). Plant virus-specific transport function. II. A factor controlling virus host range. Virology 122, 327–331.

    CAS  Google Scholar 

  • Tanguy, J. & Martin, C. (1972). Phenolic compounds and the hypersensitivity reaction in Nicotiana tabacum infected with tobacco mosaic virus. Phytochemistry 11, 19–28.

    CAS  Google Scholar 

  • Taniguchi, T. (1963). Similarity in the accumulation of tobacco mosaic virus in systemic and local necrotic infection. Virology 19, 237–238.

    PubMed  CAS  Google Scholar 

  • Tarn, T.R. & Adams, J.B. (1982). Aphid probing and feeding, electronic monitoring and plant breeding. In ‘Pathogens, Vectors and Plant Diseases. Approaches to Control.’ (Harris, K.F. & Maramorosch, K., eds), pp. 221–246. Academic Press, New York.

    Google Scholar 

  • Tavantzis, S.N., Smith, S.H. & Whitham, F.H. (1979). The influence of kinetin on tobacco ringspot virus infectivity and the effect of virus infection on the cytokinin activity in intact leaves of Nicotiana glutinosa L. Physiological Plant Pathology 14, 227–233.

    CAS  Google Scholar 

  • Thomas, P.E. & Fulton, R.W. (1968a). Correlation of the ectodesmata number with nonspecific resistance to initial virus infection. Virology 34, 459–469.

    CAS  Google Scholar 

  • Thomas, P.E. & Fulton, R.W. (1968b). Resistance to spread of virus from cell to cell in T.I. 245 tobacco. Virology 35, 108–111.

    PubMed  CAS  Google Scholar 

  • Thomas, P.E. & Martin, N.W. (1971a). Vector preference, a factor of resistance to curly top virus in certain tomato cultivars. Phytopathology 61, 1257–1260.

    Google Scholar 

  • Thomas, P.E. & Martin, N.W. (1971b). Apparent resistance to establishment of infection by curly top virus in tomato breeding lines. Phytopathology 61, 550–551.

    Google Scholar 

  • Thomas, P.E. & Martin, N.W. (1972). Characterization of a factor of resistance in curly top virus-resistant tomatoes. Phytopathology 62, 954–958.

    Google Scholar 

  • Thrower, L.B. (1965). A radioautographic study of the formation of local lesions by tobacco mosaic virus. Phytopathology 55, 558–562.

    Google Scholar 

  • Tingey, W.N. & Laubengayer, J.E. (1981). Defense against the green peach aphid and potato leafhopper by glandular trichomes of Solanum berthaultii. Journal of Economic Entomology 74, 721–725.

    Google Scholar 

  • Tomlinson, J.R., Faithfull, E.N., Webb, N.J.W., Fraser, R.S.S. & Seeley, N.D. (1983). Chenopodium necrosis: a distinctive strain of tobacco necrosis virus isolated from river water. Annals of Applied Biology 102, 135–147.

    Google Scholar 

  • Tsugita, A. (1962). The proteins of mutants of TMV: composition and structure of chemically evoked mutants of TMV RNA. Journal of Molecular Biology 5, 284–292.

    PubMed  CAS  Google Scholar 

  • Tsugita, A. & Fraenkel-Conrat, H. (1960). The amino acid composition and C-terminal sequence of a chemically evoked mutant of TMV. Proceedings of the National Academy of Sciences of the U.S.A. 46, 636–642.

    CAS  Google Scholar 

  • Valleau, W.D. (1943). The relative positions of the N and N’ factors in Nicotiana tabacum chromosomes. Phytopathology 33, 14.

    Google Scholar 

  • Valverde, R.R. & Fulton, J.P. (1982). Characterization and variability of strains of southern bean mosaic virus. Phytopathology 72, 1265–1268.

    Google Scholar 

  • Vance, C.P., Kirk, T.K. & Sherwood, R.Y. (1980). Lignification as a mechanism of disease resistance. Annual Review of Phytopathology 18, 259–298.

    CAS  Google Scholar 

  • Vanderplank, J.E. (1968). ‘Disease Resistance in Plants.’ Academic Press, New York & London.

    Google Scholar 

  • Van Loon, L.C. (1975). Polyacrylamide disk electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. Samsun and Samsun NN. Physiological Plant Pathology 6, 289–300.

    Google Scholar 

  • Van Loon, L.C. (1976). Systemic acquired resistance, peroxidase activity and lesion size in tobacco reacting hypersensitively to TMV. Physiological Plant Pathology 8, 231–242.

    Google Scholar 

  • Van Loon, L.C. (1977). Induction by 2-chloroethylphosphonic acid of viral-like lesions, associated proteins and systemic resistance in tobacco. Virology 8, 417–420.

    Google Scholar 

  • Van Loon, L.C. (1979). Effects of auxin on the localization of tobacco mosaic virus in hypersensitively-reacting tobacco. Physiological Plant Pathology 14, 213–226.

    Google Scholar 

  • Van Loon, L.C. (1982). Regulation of changes in proteins and enzymes associated with active defence against virus infection. In ‘Active Defense Mechanisms in Plants’ (Wood, R.K.S., ed.), pp. 247–274. Plenum Press, New York & London.

    Google Scholar 

  • Van Loon, L.C. (1983). The induction of pathogenesis-related proteins by pathogens and specific chemicals. Netherlands Journal of Plant Pathology 89, 265–274.

    Google Scholar 

  • Van Loon, L.C. & Antoniw, J.F. (1982). Comparison of the effects of salicylic acid and ethephon with virus induced hypersensitivity and acquired resistance in tobacco. Netherlands Journal of Plant Pathology 88, 237–256.

    Google Scholar 

  • Van Loon, L.C. & Berbee, R.T. (1978). Endogenous levels of indoleacetic acid in leaves of tobacco reacting hypersensitively to tobacco mosaic virus. Zeitschrift fuer Pflanzenphysiologie 89, 373–375.

    Google Scholar 

  • Van Loon, L.C. & Geelen, J.L.M.C. (1971). The relation of polyphenoloxidase and peroxidase to symptom expression in tobacco var ‘Samsun NNE after infection with tobacco mosaic virus. Rota Phytopathologica Academiae Scientiarum Hungaricae 6, 9–20.

    Google Scholar 

  • Van Loon, L.C. & Van Kammen, A. (1970). Polyacrylamide disc electrophoresis of the soluble leaf proteins from N. tabacum var Samsun and Samsun NN. II. Changes in protein constitution after infection with TMV. Virology 40, 199–211.

    Google Scholar 

  • Venekamp, J.H. & Beemster, A.B.R. (1980a). Mature plant resistance of potato against some virus diseases. I. Concurrence of development of mature plant resistance against potato virus X and decrease of ribosome and RNA content. Netherlands Journal of Plant Pathology 86, 1–10.

    CAS  Google Scholar 

  • Venekamp, J.H. & Beemster, R.B.R. (1980b). Mature plant resistance of potato against some virus diseases. II. Mature plant resistance and the influence of temperature on the ribosomal and RNA content in leaves. Netherlands Journal of Plant Pathology 86, 11–16.

    CAS  Google Scholar 

  • Venekamp, J.H., Schepers, A. & Bus, C.B. (1980). Mature plant resistance against some virus diseases. III. Mature plant resistance against potato virus Y, indicated by decrease in ribosome content in ageing potato plants under field conditions. Netherlands Journal of Plant Pathology 86, 301–309.

    Google Scholar 

  • Wasuwat, S. L. & Walker, J.C. (1961a). Inheritance of resistance in cucumber to cucumber mosaic virus. Phytopathology 51, 423–428.

    Google Scholar 

  • Wasuwat, S.L. & Walker, J.C. (1961b). Relative concentration of cucumber mosaic virus in a resistant and a susceptible cucumber variety. Phytopathology 51, 614–615.

    Google Scholar 

  • Weintraub, M., Kemp, W.G. & Ragetli, H.W.J. (1961). Some observations on hypersensitivity to plant viruses. Phytopathology 51, 290–293.

    Google Scholar 

  • Weintraub, M. & Ragetli, H.W.J. (1964). An electron microscope study of tobacco mosaic virus lesions in Nicotiana qlutinosa L. Journal of Cell Biology 23, 499–509.

    PubMed  CAS  Google Scholar 

  • Weintraub, M., Ragetli, H.W.J. & Lo, E. (1972). Mitochondrial content and respiration in leaves with localized virus infections. Virology 50, 841–850.

    PubMed  CAS  Google Scholar 

  • Weststeijn, E.M. (1976). Peroxidase activity in leaves of Nicotiana tabacum var. Xanthi nc before and after infection with tobacco mosaic virus. Physiological Plant Pathology 6, 63–71.

    Google Scholar 

  • Weststeijn, E.M. (1978). Permeability changes in the hypersensitive reaction of Nicotiana tabacum cv. Xanthi nc after infection with tobacco mosaic virus. Physiological Plant Pathology 13, 253–258.

    Google Scholar 

  • Weststeijn, E.A. (1981). Lesion growth and virus localization in leaves of Nicotiana tabacum cv. Xanthi nc after inoculation with tobacco mosaic virus and incubated alternately at 22°C and 32°C. Physiological Plant Pathology 18, 356–368.

    Google Scholar 

  • Whenham, R.J. (1983). Evaluation of selective detectors for the rapid and sensitive gas chromatographic assay of cytokinins, and application to the analysis of cytokinins in plant extracts. Planta 157, 554–560.

    CAS  Google Scholar 

  • Whenham, R.J. & Fraser, R.S.S. (1981). Effect of systemic and local-lesion-forming strains of tobacco mosaic virus on abscisic acid concentration in tobacco leaves: consequences for the control of leaf growth. Physiological Plant Pathology 18, 267–278.

    CAS  Google Scholar 

  • Williams, B.R.G., Golgher, R.R. & Kerr, I.M. (1979). Activation of a nuclease by pppA2’p5’A2’p5’A in intact cells. FEBS Letters 105, 47–51.

    PubMed  CAS  Google Scholar 

  • Wood, K.R. (1971). Peroxidase isoenzymes in leaves of cucumber (Cucumis sativus L.) cultivars systemically infected with the W strain of cucumber mosaic virus. Physiological Plant Pathology 1, 133–139.

    Google Scholar 

  • Wood, K.R. & Barbara, D.J. (1971). Virus multiplication and peroxidase activity in leaves of cucumber (Cucumis sativus L.) cultivars systemically infected with the W strain of cucumber mosaic virus. Physiological Plant Pathology 1, 73–81.

    CAS  Google Scholar 

  • Wu, J.H. (1973). Wound healing as a factor in limiting the size of lesions in Nicotiana glutinosa leaves infected with the very mild strain of tobacco mosaic virus (TNV-VP). Virology 51, 474–484.

    PubMed  CAS  Google Scholar 

  • Wu, J.H. & Dimitman, J.E. (1970). Leaf structure and callose formation as determinants of tobacco mosaic virus movement in bean leaves as revealed by UV irradiation studies. Virology 40, 820–827.

    PubMed  CAS  Google Scholar 

  • Wyatt, S.D. & Kuhn, C.W. (1979). Replication and properties of cowpea chlorotic mottle virus in resistant cowpeas. Phytopathology 69, 125–129.

    CAS  Google Scholar 

  • Wyen, N.V., Udvary, J., Erdei, S. & Farkas, G.L. (1972). The level of a relatively purine sensitive ribonuclease increases in virus-infected hypersensitive or mechanically injured tobacco leaves. Virology 48, 337–341.

    PubMed  CAS  Google Scholar 

  • Zaitlin, M. & Leonard, D.A. (1982). A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology 117, 416–424.

    PubMed  Google Scholar 

  • Zaitlin, M. & Siegel, A. (1963). A virus inhibitor from tobacco. Phytopathology 53, 224–227.

    CAS  Google Scholar 

  • Zimmerman-Gries, S. (1979). Reducing the spread of potato leaf roll virus, alfalfa mosaic virus and potato virus Y in seed potatoes by trapping aphids on sticky yellow polyethylene sheets. Potato Research 22, 123–131.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Fraser, R.S.S. (1985). Mechanisms Involved in Genetically Controlled Resistance and Virulence: Virus Diseases. In: Fraser, R.S.S. (eds) Mechanisms of Resistance to Plant Diseases. Advances in Agricultural Biotechnology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5145-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5145-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8776-6

  • Online ISBN: 978-94-009-5145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics