Skip to main content

The Genetic Bases of Relationships between Microbial Parasites and their Hosts

  • Chapter

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 17))

Abstract

Historical perspective. Loss of reproductive capacity due to infectious disease is one of many selective forces operating in natural plant populations (Harlan, 1976; Levin, 1975). One result of the imposed selection is the evolution of genotypes exhibiting an enhanced capability to reproduce despite the prevalence of a disease-causing agent. There is now clear evidence that disease resistance and tolerance are important features of natural plant populations (Segal et al., 1980; Ben Kalio & Clarke, 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim, P., Jones, T.N. & English, P.D. (1969). Biochemistry of the cell wall in relation to infective processes. Annual Review of Phytopathology 7, 171–194.

    PubMed  CAS  Google Scholar 

  • Alan, H., Katan, J. & Keder, N. (1974). Factors affecting penetrance of resistance to Fusarium oxysporum f.sp. lycopersici on tomatoes. Phytopathology 64, 455–461.

    Google Scholar 

  • Anderson, N.E. (1933). Fusarium resistance in Wisconsin Hollander cabbage. Journal of Agricultural Research 46, 639–661.

    Google Scholar 

  • Anderson, N.G. (1982). Interpreting residual effects of “defeated” resistance genes. Phytopathology 72, 1383–1384.

    Google Scholar 

  • Anderson, R.G. (1961). The inheritance of leaf rust resistance in seven varieties of common wheat. Canadian Journal of Plant Science 41, 342–359.

    Google Scholar 

  • Anderson, R.G. (1963). Studies on the inheritance of resistance to leaf rust of wheat. Hereditas 2 (Supplement), 144–155.

    Google Scholar 

  • Arnold, M.H. & Brown, S.J. (1968). Variation in the host-parasite relationship of a crop disease. Journal of Agricultural Science, Cambridge 71, 19–36.

    Google Scholar 

  • Atkins, J.G., Robot, A.L., Adair, C.R., Goto, K., Kozaka, T., Yanagida, R., Yamada, M. & Matsumoto, S. (1967). An international set of rice varieties for differentiating races of Pyricularia oryzae. Phytopathology 57, 279–301.

    Google Scholar 

  • Barratt, D.H.P. & Flavell, R.B. (1975). Alterations in mitochondria associated with cytoplasmic and nuclear genes concerned with male sterility in maize. Theoretical and Applied Genetics 45, 315–321.

    Google Scholar 

  • Barrus, M.F. (1911). Variation of varieties of bean in their susceptibility to anthracnose. Phytopathology 1, 190–195.

    Google Scholar 

  • Barrus, M.F. (1915). An anthracnose-resistant red kidney bean. Phytopathology 5, 303–311.

    Google Scholar 

  • Barton, P., Dyck, P.L. & Samborski,. D.J. (1969). Adult plant leaf rust resistance in Thatcher and Marquis wheat: a genetic analysis of the host-parasite interaction. Canadian Journal of Botany 47, 267–269.

    Google Scholar 

  • Ben Kalio, V.D. & Clarke, D.D. (1979). Studies on tolerance in wild plants; effects of Erysiphe fischeri on the growth and development of Senecio vulgaris. Physiological Plant Pathology 14, 203–208.

    Google Scholar 

  • Bennett, F.G.A. (1984). Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathology 33, 279–300.

    Google Scholar 

  • Biffen, R.H. (1905). Mendel’s laws of inheritance and wheat breeding. Journal of Agricultural Science 1, 4–48.

    Google Scholar 

  • Biffen, R.H. (1907). Studies in the inheritance of disease resistance. Journal of Agricultural Science 2, 104–128.

    Google Scholar 

  • Biffen, R.H. (1912). Studies in the inheritance of disease resistance. II. Journal of Agricultural Science 4, 421–429.

    Google Scholar 

  • Binkerhoff, L.A. (1970). Variation in Xanthomonas malvacearum and its relation to control. Annual Review of Phytopathology 8, 85–110.

    Google Scholar 

  • Blanch, P.A., Asher, M.J.C. & Burnett, J.H. (1981). Inheritance of pathogenicity and cultural characters in Gaeumannomyces graminis var. tritici. Transactions of the British Mycological Society 77, 391–399.

    Google Scholar 

  • Boone, D.M. (1971). Genetics of Venturia inaequalis. Annual Review of Phytopathology 9, 297–316.

    Google Scholar 

  • Brasier, C.M. (1977). Inheritance of pathogenicity and cultural characters in Ceratocystis ulmi; hybridization of protoperithecial and non-aggressive strains. Transactions of the British Mycological Society 68, 45–52.

    Google Scholar 

  • Brasier, C.M. & Gibbs, J.M. (1976). Inheritance of pathogenicity and cultural characters in Ceratocystis ulmi: hybridization of the aggressive and non-aggressive strains. Annals of Applied Biology 83, 31–37.

    Google Scholar 

  • Browder, L.E. (1980). A compendium of information about named genes for low reaction to Puccinia recondite in wheat. Crop Science 20, 775–779.

    Google Scholar 

  • Browder, L.E. & Eversmeyer, M.G. (1980). Sorting of Puccinia recondita:Triticum infection-type data sets towards the gene-for-gene model. Phytopathology 70, 666–670.

    Google Scholar 

  • Browder, L.E. & Eversmeyer, M.G. (1982). Sorting of infection-type data sets towards the gene-for-gene model: a reply. Phytopathology 72, 458–460.

    Google Scholar 

  • Burkholder, W.H. (1918). The production of an anthracnose-resistant white marrow bean. Phytopathology 8, 351–359.

    Google Scholar 

  • Caten, C.E. (1974). Intra-racial variation in Phytophthora infestans and adaptation to field resistance for potato blight. Annals of Applied Biology 77, 259–270.

    Google Scholar 

  • Caten, C.E., Person, C., Grath, J.V. & Dhahi, S.J. (1984). The genetics of pathogenic aggressiveness in three dikaryons of Ustilago hordei. Canadian Journal of Botany 62, 1209–1219.

    Google Scholar 

  • Christ, B.J. & Groth, J.U. (1982a). Inheritance of virulence to three bean cultivars in three isolates of the bean rust pathogen. Phytopathology 72, 767–770.

    Google Scholar 

  • Christ, B.J. & Groth, J.U. (1982b). Inheritance of resistance in three cultivars of beans to the been rust pathogen and the interaction of virulence and resistance genes. Phytopathology 72, 771–773.

    Google Scholar 

  • Clarke, R.E., Jones, H.A. & Little, T.N. (1944). Inheritance of bulb colour in the onion. Genetics 29, 569–575.

    PubMed  CAS  Google Scholar 

  • Clifford, B.C. & Clothier, R.B. (1974). Physiologic specialization of Puccinia hordei on barley. Transactions of the British Mycological Society 63, 421–430.

    Google Scholar 

  • Comstock, J.C., Martinson, C.A. & Gengenbach, B.G. (1973). Host specificity of a toxin from Phyllosticta maydis for Texas cytoplasmically male-sterile maize. Phytopathology 63, 1357–1361.

    CAS  Google Scholar 

  • Cotter, R.U. & Roberts, B.J. (1963). A synthetic hybrid of two varieties of Puccinia graminis. Phytopathology 53, 344–346.

    Google Scholar 

  • Cross, J.E., Kennedy, B.W., Lambert, J.W. & Cooper, R.L. (1966). Pathogenic races of the bacterial blight pathogen on soybeans, Pseudomonas glycinea. Plant Disease Reporter 50, 557–560.

    Google Scholar 

  • Crute, I.R. (1981). The host specificity of Peronosporaceous fungi and the genetics of the relationship between host and parasite. In ‘The Downy Mildews’ (Spencer, D.M., ed.), pp. 237–253. Academic Press, London & New York.

    Google Scholar 

  • Crute, I.R. (1985). The relationship between Plasmodiophora brassicae and its hosts - the application of concepts relating to variation in interorganismal associations. Advances in Plant Pathology, in press.

    Google Scholar 

  • Crute, I.R. & Davis, A.A. (1977). Specificity of Bremia lactucae from Lactuca sativa. Transactions of the British Mycological Society 69, 405–410.

    Google Scholar 

  • Crute, I.R., Gray, R.R., Crisp, P. & Buczacki, S.T. (1980). Variation in Plasmodiophora brassicae and resistance to clubroot disease in brassicas and allied crops - a critical review. Plant Breeding Abstracts 50, 91–104.

    Google Scholar 

  • Crute, I.R. & Lebeda, A. (1981). Evidence for a new specific resistance factor in some lettuce (Lactuca sativa L.) cultivars previously considered to be universally susceptible to Bremia lactucae Regel. Theoretical and Applied Genetics 60, 185–189.

    Google Scholar 

  • Crute, I.R. & Lebeda, A. (1983). Two new specific resistance factors to Bremia lactucae identified in cultivars of lettuce. Tests of Agrochemicals and Cultivars No. 4 (Annals of Applied Biology 102, Supplement), 128–129.

    Google Scholar 

  • Crute, I.R. & Norwood, J. M. (1978). Incomplete specific resistance to Bremia lactucae in lettuce. Annals of Applied Biology 89, 467–474.

    Google Scholar 

  • Crute, I.R., Phelps, K., Barnes, A., Buczacki, S.T. & Crisp, P. (1983). The relationship between genotypes of three Brassica species and collections of Plasmodiophora brassicae. Plant Pathology 32, 405–420.

    Google Scholar 

  • Day, P.R. (1956). Race names of Cladosporium fulvum. Tomato Genetics Co-operative Report 6, 13–14.

    Google Scholar 

  • Day, P.R. (1974). ‘Genetics of Host-Parasite Interaction’ Freeman, San Francisco. 238 pp.

    Google Scholar 

  • Day, P.R., Barrett, J.A. & Wolfe, M.S. (1983). The evolution of host-parasite interaction. In ‘Genetic Engineering of Plants, an Agricultural Perspective’ (Kosuge, T., Meredith, C.P. & Hollaender, A., eds), pp. 419–430. Plenum Press, New York.

    Google Scholar 

  • Deshmukh, M.J. & Howard, H.W. (1956). Field resistance to potato blight (Phytophthora infestans). Nature 177, 794–795.

    Google Scholar 

  • DeVay, J.E. & Adler, H.E. (1976). Antigens common to hosts and parasites. Annual Review of Microbiology 30, 147–168.

    Google Scholar 

  • DeVay, J.E., Charudattan, R. & Wimalajeewa, D.L.S. (1972). Common antigenic determinants as a possible regulator of host-pathogen compatibility. American Naturalist 106, 185–194.

    Google Scholar 

  • DeVay, J.E. Schnathorst, W.C. & Facia, M.S. (1967). Common antigens and host parasite interactions. In ‘The Dynamic Role of Molecular Constituents in Plant-Parasite Interactions’ (Minocha, C.J. & Uritani, I., eds), pp. 318–328. Bruce, Minneapolis.

    Google Scholar 

  • Doubly, J.A., Flor, H.H. & Clagett, C.D. (1960). Relation of antigens of Melampsora lini and Linum usitatissimum to resistance and susceptibility. Science 131, 229.

    PubMed  CAS  Google Scholar 

  • Dyck, P.L. (1977). Genetics of leaf rust reaction in three introductions of common wheat. Canadian Journal of Genetics and Cytology 19, 711–716.

    Google Scholar 

  • Dyck, P.L. & Johnson, R. (1983). Temperature sensitivity of genes for resistance in wheat to Puccinia recondite. Canadian Journal of Plant Pathology 5, 229–234.

    Google Scholar 

  • Dyck, P.L. & Samborski, D.J. (1968). Genetics of resistance to leaf rust in the common wheat varieties Webster, Laos, Brevit, Corina, Malakov and Centenario. Canadian Journal of Genetics and Cytology 10, 7–17.

    Google Scholar 

  • Dyck, P.L. & Samborski, D.J. (1974). Inheritance of virulence in Puccinia recondita on alleles at the Lr2 locus for resistance in wheat. Canadian Journal of Genetics and Cytology 16, 323–332.

    Google Scholar 

  • Dyck, P.L., Samborski, D.J. & Anderson, R.G. (1966). Inheritance of adult-plant leaf rust resistance derived from the common wheat varieties Exchange and Frontana. Canadian Journal of Genetics and Cytology 8, 665–671.

    Google Scholar 

  • Ebba, T. & Person, C. (1975). Genetic control of virulence in Ustilaqo hordei. IV. Duplicate genes for virulence and environmental modification of a gene-for-gene relationship. Canadian Journal of Genetics and Cytology 17, 631–636.

    Google Scholar 

  • Eenink, A.H. (1976). Genetics of host-parasite relationships and uniform and differential resistance. Netherlands Journal of Plant Pathology 82, 133–145.

    Google Scholar 

  • Ellingboe, A.H. (1972). Genetics and physiology of primary infection by Erysiphe qraminis. Phytopathology 62, 401–406.

    Google Scholar 

  • Ellingboe, A.H. (1976). Genetics of host-parasite interactions. In ‘Encyclopedia of Plant Physiology, Vol. 4. Physiological Plant Pathology’ (Heitefuss, R. & Williams, P.H., eds), pp. 761–778. Springer Verlag, Berlin.

    Google Scholar 

  • Ellingboe, R.H. (1979). Evidence from the quadratic check. Proceedings of Symposium IX, International Congress of Plant Protection Vol. 1, 194–198.

    Google Scholar 

  • Ellingboe, R.H. (1981). Changing concepts in host-pathogen genetics. Annual Review of Phytopathology 19, 125–143.

    CAS  Google Scholar 

  • Ellingboe, A.H. (1983). Genetical aspects of interaction between plant hosts and their soilborne pathogens. Phytopathology 73, 941–944.

    Google Scholar 

  • Ellingboe, R.H. & Gabriel, D.W. (1977). Induced conditional mutations for studying host/pathogen interactions. In ‘Induced Mutations Against Plant Disease’ (International Atomic Energy Agency, ed.), pp. 35–45. IAEA, Vienna.

    Google Scholar 

  • Emara, Y. (1972). Genetic control of aggressiveness in Ustilaqo hordei. I. Natural variability among physiological races. Canadian Journal of Genetics and Cytology 14, 919–924.

    Google Scholar 

  • Emara, Y.A. & Sidhu, G. (1974). Polygenic inheritance of aggressiveness in Ustilaqo hordei. Heredity 32, 219–224.

    PubMed  CAS  Google Scholar 

  • Eshed, M. & Wahl, I. (1970). Host ranges and interrelations of Erysiphe qraminis hordei E. qraminis tritici and E. qraminis avenae. Phytopathology 60, 628–634.

    Google Scholar 

  • Fallik, E., Basham, Y., Okon, Y. & Keder, M. (1983). Genetics of resistance to bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. Annals of Applied Biology 104, 321–325.

    Google Scholar 

  • Fan, Z., Rimmer, S.R. & Steffansson, B.R. (1983). Inheritance of resistance to Albuqo candida in rape (Brassica napus L.). Canadian Journal of Genetics and Cytology 25, 420–424.

    Google Scholar 

  • Favret, E. (1960). Spontaneous and induced mutations of barley for the reaction to mildew. Hereditas 46, 20–28.

    CAS  Google Scholar 

  • Favret, E. (1971). The host-pathogen system and its genetic relationship. In ‘Barley Genetics II; Proceedings of the 2nd International Barley Genetics Symposium’ (Milan, R.A., ed.), pp. 457–471. Pullman, Washington.

    Google Scholar 

  • Flangas, A.L. & Dickson, J.G. (1961a). Complementary genetic control of differential compatibility in rusts. Quarterly Review of Biology 36, 254–272.

    CAS  Google Scholar 

  • Flangas, A.L. & Dickson, J.G. (1961b). The genetic control of pathogenicity, serotypes and variability in Puccinia sorqhi. American Journal of Botany 48, 275–285.

    Google Scholar 

  • Fleming, R.A. & Person, C.O. (1982). Consequences of polygenic determination of resistance and aggressiveness in nonspecific host:parasite relationships. Canadian Journal of Plant Pathology 4, 89–96.

    Google Scholar 

  • Flor, H.H. (1935). Physiologic specialization of Melampsora lini on Linum usitatissimum. Journal of Agricultural Research 51, 819–837.

    Google Scholar 

  • Flor, H.H. (1940). New physiologic races of flax rust. Journal of Agricultural Research 60, 573–591.

    Google Scholar 

  • Flor, H.H. (1947). Inheritance of reaction to rust in flax. Journal of Agricultural Research 74, 241–262.

    Google Scholar 

  • Flor, H.H. (1941). Inheritance of rust reaction in a cross between the flax varieties Buda and J.W.S. Journal of Agricultural Research 63, 369–388.

    Google Scholar 

  • Flor, H.H. (1942). Inheritance of pathogenicity in Melampsora lini. Phytopathology 32, 653–669.

    Google Scholar 

  • Flor, H.H. (1946). Genetics of pathogenicity in Melampsora lini. Journal of Agricultural Research 7, 335–357.

    Google Scholar 

  • Flor, H.H. (1954). Identification of races of flax rust by lines with single rust-conditioning genes. Technical Bulletin No. 1087. U.S. Department of Agriculture. 25 pp.

    Google Scholar 

  • Flor, H.H. (1955). Host-parasite interaction in flax rust - its genetics and other implications. Phytopathology 45, 680–685.

    Google Scholar 

  • Flor, N.H. (1956). The complementary genetic systems in flax and flax rust. Advances in Genetics 8, 29–54.

    Google Scholar 

  • Flor, H.H. (1958). Mutation to wider virulence in Melampsora lini. Phytopathology 48, 297–301.

    Google Scholar 

  • Flor, H.H. (1959). Differential host range of the monocaryon and the dicaryons of an eu-autoecious rust. Phytopathology 49, 794–795.

    Google Scholar 

  • Flor, H.H. (1960). Asexual variants of Melampsora lini. Phytopathology 50, 223–226.

    Google Scholar 

  • Flor, H.H. (1965). Tests for allelism of rust-resistance genes in flax. Crop Science 5, 415–418.

    Google Scholar 

  • Flor, H.H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology 9, 275–296.

    Google Scholar 

  • Flor, H.H. & Comstock, U.E. (1972). Identification of rust-conditioning genes in flax cultivars. Crop Science 12, 800–804.

    Google Scholar 

  • Fullerton, R.R. & Nielsen, J. (1974). Identical genes for virulence in the smuts Ustilago hordei and U. nigra and inheritance of virulence in the barley cultivars Keystone and Conquest. Canadian Journal of Plant Science 54, 253–257.

    Google Scholar 

  • Gabe, H.L. (1975). Standardization of nomenclature for pathogenic races of Fusarium oxysporum f. sp. lycopersici. Transactions of the British Mycological Society 64, 156–159.

    Google Scholar 

  • Gabriel, D.W. & Ellingboe, A.H. (1982a). High resolution two-dimensional electrophoresis of proteins from congenic wheat lines. Physiological Plant Pathology 20, 349–357.

    CAS  Google Scholar 

  • Gabriel, D.W. & Ellingboe, A.H. (1982b). Polypeptide mapping by two dimensional electrophoresis and pathogenic variation in field isolates and induced mutants of Erysiphe graminis f. sp. tritici. Phytopathology 72, 1496–1499.

    CAS  Google Scholar 

  • Gabriel, D.W., Ellingboe, A.H. & Hussman, E.C. (1979). Mutations affecting virulence in Phyllosticta maydis. Canadian Journal of Botany 57, 2639–2643.

    Google Scholar 

  • Gabriel, D.W., Linker, N. & Ellingboe, R.H. (1982). The induction and analysis of two classes of mutations affecting pathogenicity in obligate parasites. Phytopathology 72, 1026–1028.

    Google Scholar 

  • Gilchrist, D.G. & Grogan, R.G. (1976). Production and nature of a host-specific toxin from Alternaria alternate f. sp. lycopersici. Phytopathology 66, 165–171.

    Google Scholar 

  • Globerson, D., Netzer, D. & Tjillingii, F. (1974). Mode of inheritance of resistance in lettuce (Lactuca sativa L.) to three Israeli and four Dutch races of downy mildew (Bremia lactucae Reg.). Euphytica 23, 54–60.

    Google Scholar 

  • Graham, K.M. (1963). Inheritance of resistance to Phytophthora infestans in two diploid Mexican Solanum species. Euphytica 12, 35–40.

    Google Scholar 

  • Green, G.J. (1964). A color mutation, its inheritance, and the inheritance of pathogenicity in Puccinia qraminis Pers. Canadian Journal of Botany 42, 1653–1664.

    Google Scholar 

  • Green, G.J. (1966). Selfing studies with races 10 and 11 of wheat stem rust. Canadian Journal of Botany 44, 1255–1260.

    Google Scholar 

  • Green, G.J. (1971). Hybridization between Puccinia qraminis tritici and Puccinia qraminis secalis and its evolutionary implications. Canadian Journal of Botany 49, 2089–2095.

    Google Scholar 

  • Green, G.J. & Campbell, A.B. (1979). Wheat cultivars resistant to Puccinia qraminis tritici in Western Canada; their development, performance and economic value. Canadian Journal of Plant Pathology 1, 3–11.

    Google Scholar 

  • Guzman, J.N. (1964). Nature of partial resistance of certain clones of three Solanum species to Phytophthora infestans, Phytopathology 54, 1398–1404.

    Google Scholar 

  • Habgood, R.M. (1974). The inheritance of resistance to Rhynchosporium secalis in some European spring barley cultivars. Annals of Applied Biology 77, 191–200.

    Google Scholar 

  • Habgood, R.M. & Hayes, J.D. (1971). The inheritance of resistance to Rhynchosporium secalis in 133 barley. Heredity 27, 25–37.

    Google Scholar 

  • Haggag, N.E.A. & Dyck, P.L. (1973). The inheritance of leaf rust resistance in four common wheat varieties possessing genes at or near the Lr3 locus. Canadian Journal of Genetics and Cytology 15, 127–134.

    Google Scholar 

  • Haggag, N.E.R., Samborski, D.J. & Dyck, P.L. (1973). Genetics of pathogenicity in three races of leaf rust on four wheat varieties. Canadian Journal of Genetics and Cytology 15, 73–82.

    Google Scholar 

  • Harder, D.E., McKenzie, R.I.H. & Martens, J.W. (1984). Inheritance of adult plant resistance to crown rust in an accession of Avena sterilis. Phytopathology 74, 352–353.

    Google Scholar 

  • Hare, R.R. & McIntosh, R.R. (1979). Genetic and cytogenetic studies of durable adult-plant resistances in ‘Hope’ and related cultivars to wheat rusts. Zeitschrift für Pflanzenzüchtung 83, 350–367.

    Google Scholar 

  • Harlan, J.R. (1976). Diseases as a factor in plant evolution. Annual Review of Phytopathology 14, 31–51.

    Google Scholar 

  • Haywood, M.J. & Ellingboe, A.H. (1979). Genetic control of primary haustorial development of Erysiphe graminis on wheat. Phytopathology 69, 48–53.

    Google Scholar 

  • Heather, W.A. & Chandrashekar, M. (1982). Evolutionary, epidemiological and ecological implications of forms of resistance in Populus spp. to Melampsora leaf rusts. Australian Forest Research 12, 231–244.

    Google Scholar 

  • Hiura, U. (1962). Hybridization between varieties of Erysiphe graminis. Phytopathology 52, 664–666.

    Google Scholar 

  • Hiura, U. (1978). Genetic basis of forma speciales in Erysiphe graminis D.C. In ‘The Powdery Mildews’ (Spencer, D.M., ed.), pp. 101–128. Academic Press, London & New York.

    Google Scholar 

  • Hogenboom, N. G. (1970). Inheritance of resistance to corky root in tomato (Lycopersicon esculentum Mill.). Euphytica 19, 413–425.

    Google Scholar 

  • Holton, C.S. & Halisky, P.M. (1960). Dominance of avirulence and monogenic control of virulence in race hybrids of Ustilago avenae. Phytopathology 50, 766–770.

    Google Scholar 

  • Holton, C.S., Hoffmann, J.A. & Duran, R. (1968). Variation in the smut fungi. Annual Review of Phytopathology 6, 213–242.

    Google Scholar 

  • Hooker, A.L. & Russell, W.A. (1962). Inheritance of resistance to Puccinia sorghi in six corn inbred lines. Phytopathology 52, 122–128.

    Google Scholar 

  • Horsfall, J.G. & Cowling, E.B. (1977). The sociology of plant pathology. In ‘Plant Pathology, an Advanced Treatise’ (Horsfall, J.G. & Cowling, E.B., eds), pp. 12–33. Academic Press, New York.

    Google Scholar 

  • Howes, N.K., Kim, W.K. & Rohringer, R. (1982). Detergent-soluble polypeptides extracted from uredospores of four physiologic races of Puccinia graminis f. sp. tritici. Physiological Plant Pathology 21, 361–366.

    CAS  Google Scholar 

  • Hsu, S. & Ellingboe, A.H. (1972). Elongation of secondary hyphae and transfer of 35S from barley to Eryshiphe graminis f. sp. hordei during primary infection. Phytopathology 62, 876–882.

    Google Scholar 

  • Ines, N.L. (1983). Bacterial blight of cotton. Biological Reviews 58, 157–176.

    Google Scholar 

  • James, R.V. & Fry, W.E. (1983). Potential for Phytophthora infestans populations to adapt to potato cultivars with rate-reducing resistance. Phytopathology 73, 984–988.

    Google Scholar 

  • Jeffrey, J.I.B., Jinks, J.L. & Grindle, M. (1962). Intraracial variation in Phytophthora infestans and field resistance to potato blight. Genetics 32, 323–338.

    Google Scholar 

  • Jeger, M.J. (1980). Multivariate models of the components of partial resistance. Protection Ecology 2, 265–269.

    Google Scholar 

  • Jenns, A.E., Leonard, K.J. & Moll, R.H. (1982). Variation in the expression of specificity in two maize diseases. Euphytica 31, 269–279.

    Google Scholar 

  • Jinks, J.L. & Grindle, M. (1963). Changes induced by training in Phytophthora infestans. Heredity 18, 245–264.

    Google Scholar 

  • Johnson, A.G., Crute, I.R. & Gordon, P.L. (1977). The genetics of race specific resistance in lettuce (Lactuca sativa) to downy mildew (Bremia lactucae). Annals of Applied Biology 86, 87–103.

    Google Scholar 

  • Johnson, A.G. Laxton, S.A., Crute, I.R., Gordon, P.L. & Norwood, J.M. (1978). Further work on the genetics of race specific resistance in lettuce (Lactuca sativa) to downy mildew (Bremia lactucae). Annals of Applied Biology 89, 257–264.

    Google Scholar 

  • Johnson, L.B. & Schafer, J.F. (1965). Identification of wheat leaf rust resistance combinations by differential temperature effects. Plant Disease Reporter 49, 222–224.

    Google Scholar 

  • Johnson, R. (1978). Practical breeding for durable resistance to rust diseases of self pollinating cereals. Euphytica 27, 529–540.

    Google Scholar 

  • Johnson, R. (1979). The concept of durable resistance. Phytopathology 69, 198–199.

    Google Scholar 

  • Johnson, R. (1983). Genetic background of durable resistance. In ‘Durable Resistance in Crops’ (Lamberti, F., Waller, J.M. & Van der Graaf, M.A., eds), pp. 5–26. Plenum Press, London & New York.

    Google Scholar 

  • Johnson, R. & Law, C.N. (1975) Genetic control of durable resistance to yellow rust (Puccinia striiformis) in the wheat cultivar Hybride de Bersee. Annals of Applied Biology 81, 385–391.

    Google Scholar 

  • Johnson, T. (1954). Selfing studies with physiological races of wheat stem rust, Puccinia graminis var. tritici. Canadian Journal of Botany 32, 506–522.

    Google Scholar 

  • Johnson, T., Newton, M. & Brown, A.M. (1932). Hybridization of Puccinia graminis tritici with Puccinia graminis secalis and Puccinia graminis agrostidis. Scientific Agriculture 13, 141–153.

    Google Scholar 

  • Johnson, T., Newton, M. & Brown, A.N. (1934). Further studies of the inheritance of spore colour and pathogenicity in crosses between physiologic forms of Puccinia graminis tritici. Scientific Agriculture 14, 360–373.

    Google Scholar 

  • Johnston, C.O. & Heyne, E.G. (1964). Whichita wheat back cross lines for differential hosts in identifying physiologic races of Puccinia recondite. Phytopathology 54, 385–388.

    Google Scholar 

  • Jones, D.R. & Deverall, B.J. (1977). The effect of the Lr20 resistance gene in wheat on the development of leaf rust, Puccinia recondite. Physiological Plant Pathology 10, 275–284.

    Google Scholar 

  • Jørgensen, J.H. (1971a). An allelic series of mutant genes for powdery mildew in barley. In ‘Barley Genetics II. Proceedings of the 2nd International Barley Genetics Symposium’ (Milan, R.A., ed.), pp. 475–477. Pullman, Washington.

    Google Scholar 

  • Jørgensen, J.H. (1971b). Comparison of induced mutant genes with spontaneous genes in barley conditioning resistance to powdery mildew. In ‘Mutation Breeding for Disease Resistance’ (International Atomic Energy Agency, ed.), pp. 117–124. IAEA, Vienna.

    Google Scholar 

  • Jørgensen, J.H. (1976). Studies on recombination between alleles in the mlml=o locus of barley and on pleiotropic effects of the alleles. In ‘Induced Mutations for Disease Resistance in Crop Plants’ (International Atomic Energy Agency, ed.), pp. 129–140. IAEA, Vienna.

    Google Scholar 

  • Jørgensen, J.H. (1977). Location of the ml-o locus on barley chromosome 4. In ‘Induced Mutations Against Plant Disease’ (International Atomic Energy Agency, ed.), pp. 533–549. IAEA, Vienna.

    Google Scholar 

  • Jørgensen, J.H. & Mortensen, K. (1977). Primary infection by Erysiphe graminis f. sp. hordei of barley mutants with resistance genes in the ml-o locus. Phytopathology 67, 678–685.

    Google Scholar 

  • Jørgensen, J.H. & Moseman, J.G. (1972). Recombination at the ml-o locus in barley conditioning resistance to Erysiphe graminis f. sp. hordei. Canadian Journal of Genetics and Cytology 14, 43–48.

    Google Scholar 

  • Kacser, H. & Burns, J.A. (1981). The molecular basis of dominance. Genetics 97, 639–666.

    PubMed  CAS  Google Scholar 

  • Kerber, E.R. & Dyck, P.L. (1977). Inhibition of stem rust resistance by chromosome 70L of Comthatch hexaploid wheat. Canadian Journal of Genetics and Cytology 19, 575–576.

    Google Scholar 

  • Kerber, E.R. & Green, G.J. (1980). Suppression of stem rust resistance in the hexaploid wheat cv. Comthatch by chromosome 7D. Canadian Journal of Botany 58, 1347–1350.

    Google Scholar 

  • Kerr, H.B. (1960). The inheritance of resistance of Linum usitissimum L. to the Australian Melampsora lini (pers.) Lev. race complex. Proceedings of the Linnean Society of New South Wales 85, 273–321.

    Google Scholar 

  • Khan, T.N. (1969). Inheritance of resistance to net blotch in barley. I. Factors affecting the penetrance and expressivity of gene(s) conditioning host resistance. Canadian Journal of Genetics and Cytology 11, 587–591.

    Google Scholar 

  • Khan, T.N. & Boyd, W.J.R. (1969a). Physiologic specialization in Drechslera teres. Australian Journal of Biological Science 22, 1229–1235.

    Google Scholar 

  • Khan, T.N. & Boyd, W.J.R. (1969b). Environmentally induced variability in the host reaction of barley to net blotch. Australian Journal of Biological Science 22, 1237–1244.

    Google Scholar 

  • Khan, T.N. & Boyd, W.J.R. (1969c). Inheritance of resistance to neck blotch in barley II. Genes conditioning resistance against race WA-2. Canadian Journal of Genetics and Cytology 11, 592–597.

    Google Scholar 

  • Kim, W.K., Howes, N.K. & Rohringer, R. (1982). Detergent soluble polypeptides in germinated and differentiated uredosporelings of wheat stem rust. Canadian Journal of Plant Pathology 4, 328–333.

    CAS  Google Scholar 

  • Kim, W.K., Martens, J.W. & Howes, N.K. (1984). Electrophoretic analysis of detergent-soluble polypeptides of nine races of Puccinia graminis f. sp. avenae and their relation to P. graminis f. sp. tritici. Canadian Journal of Plant Pathology 6, 111–118.

    CAS  Google Scholar 

  • Kimber, G. & Wolfe, M.S. (1966). The chromosome number of Erysiphe graminis. Nature 212, 318–319.

    Google Scholar 

  • Knott, D.R. (1957). The inheritance of rust resistance. III. The inheritance of stem rust resistance in nine Kenya varieties of common wheat. Canadian Journal of Plant Science 37, 366–384.

    Google Scholar 

  • Knott, D.R. (1971). Genes for stem rust resistance in wheat varieties Hope and H-44. Canadian Journal of Genetics and Cytology 13, 186–188.

    Google Scholar 

  • Knott, D.R. & Anderson, R.G. (1956). The inheritance of rust resistance. I. The inheritance of stem rust resistance in ten varieties of common wheat. Canadian Journal of Agricultural Science 36, 174–195.

    Google Scholar 

  • Knott, D.R. & Johnson, R. (1981). The sorting and analysis of infection types from Triticum aestivum/Puccinia recondita interactions. Phytopathology 71, 1010–1012.

    Google Scholar 

  • Knott, D.R. & Johnson, R. (1983). Some additional comments on sorting infection-type data sets. Phytopathology 73, 514–515.

    Google Scholar 

  • Kolmer, J.R., Christ, B.J. & Groth, J.V. (1984). Comparative virulence of monokaryotic and dikaryotic stages of five isolates of Uromyces appendiculatus. Phytopathology 74, 111–113.

    Google Scholar 

  • Kooistra, E. (1964). Recent experience of breeding leaf mould resistant tomatoes. Euphytica 13, 103–109.

    Google Scholar 

  • Kruger, J., Hoffman, C.M. & Hubbeling, N. (1977). The kappa race of Colletotrichum lindemuthianum and sources of resistance to anthracnose in Phaseolus beans. Euphytica 26, 23–25.

    Google Scholar 

  • Krupinski, J.M. & Sharp, E.L. (1979). Reselection for improved resistance of wheat to stripe rust. Phytopathology 69, 400–404.

    Google Scholar 

  • Kulkarni, R.N. & Chopra, V.L. (1982). Environment as the cause of differential interaction between host cultivars and pathogen races. Phytopathology 72, 1384–1386.

    Google Scholar 

  • Kuo, M., Yoder, O.C. & Scheffer, R.P. (1970). Comparative specificity of the toxins of Helminthosporium victoriae. Phytopathology 60, 365–368.

    CAS  Google Scholar 

  • Law, C.N. & Johnson, R. (1967). A genetic study of leaf rust resistance in wheat. Canadian Journal of Genetics and Cytology 9, 805–822.

    Google Scholar 

  • Lawrence, G.J., Mayo, G.M.E. & Shepherd, K.W. (1981a). Interactions between genes controlling pathogencitiy in the flax rust fungus. Phytopathology 71, 12–19.

    Google Scholar 

  • Lawrence, G.J., Shepherd, K.W. & Mayo, G.M.E. (1981b). Fine structure of genes controlling pathogenicity in flax rust, Melampsora lini. Heredity 46, 297–313.

    Google Scholar 

  • Leaver, C.J. & Forde, B.G. (1980). Mitochondrial genome expression in higher plants. In ‘Genome Organization and Expression in Plants’ (Leaver, C.J., ed.), pp. 407–425. Plenum Press, New York & London.

    Google Scholar 

  • Lebeda, A. (1984). Resistance of differential cultivars of Lactuca sativa to Bremia lactucae isolates from Lactuca serriola. Transactions of the British Mycological Society 83, 491–494.

    Google Scholar 

  • Levin, D.A. (1975). Pest pressure and recombination systems in plants. American Naturalist 109, 437–451.

    Google Scholar 

  • Lewellen, R.T. & Sharp, E.L. (1968). Inheritance of minor reaction gene combinations in wheat to Puccinia striiformis at two temperature profiles. Canadian Journal of Botany 46, 21–26.

    Google Scholar 

  • Lewellen, R.T., Sharp, E.L. & Hehn, E.R. (1967). Major and minor genes in wheat for resistance to Puccinia striiformis and their responses to temperature changes. Canadian Journal of Botany 45, 2165–2172.

    Google Scholar 

  • Loegering, W.Q. & Burton, C.H. (1974). Computer-generated hypothetical genotypes for reaction and pathogenicity of wheat cultivera and cultures of Puccinia graminis tritici. Phytopathology 64, 1380–1384.

    Google Scholar 

  • Loegering, W.Q. & Geis, J.R. (1957). Independence in the action of three genes conditioning stem rust resistance in Red Egyptian wheat. Phytopathology 47, 740–741.

    Google Scholar 

  • Loegering, W.Q. & Harmon, D.L. (1969). Wheat lines near-isogenic for reaction to Puccinia graminis tritici. Phytopathology 59, 456–459.

    Google Scholar 

  • Loegering, W.Q., McIntosh, R.A. & Burton, C.H. (1971). Computer analysis of disease data to derive hypothetical genotypes for reaction of host varieties to pathogens. Canadian Journal of Genetics and Cytology 13, 742–748.

    Google Scholar 

  • Loegering, W.Q. & Powers, H.R. (1962). Inheritance of pathogenicity in a cross of physiological races 111 and 36 of Puccinia graminis f. sp. tritici. Phytopathology 52, 547–554.

    Google Scholar 

  • Loegering, W.Q. & Sears, E.R. (1963). Distorted inheritance of stem-rust resistance of Timstein wheat caused by a pollen-killing gene. Canadian Journal of Cytology and Genetics 5, 65–72.

    Google Scholar 

  • Lopez, A., Rajaram, 5. & de Bauer, L.I. (1974). Susceptibility of Triticale, rye and wheat to stem rust of these three hosts. Phytopathology 64, 266–267.

    Google Scholar 

  • Luig, M.H. & Watson, I.A. (1961). A study of inheritance of pathogenicity in Puccinia graminis var. tritici. Proceedings of the Linnean Society of New South Wales 86, 217–229.

    Google Scholar 

  • Luig, M.H. & McIntosh, R.A. (1968). Location and linkage of genes in wheat chromosome 2D. Canadian Journal of Genetics and Cytology 10, 99–105.

    Google Scholar 

  • Luig, N.H. & Rajaram, S. (1972). The effect of temperature and genetic background on host gene expression and interaction to Puccinia graminis tritici. Phytopathology 62, 1171–1174.

    Google Scholar 

  • Lunsford, J.N., Futrell, M.C. & Scott, G.E. (1975). Maternal influence on response of corn to Fusarium moniliforme. Phytopathology 65, 223–225.

    Google Scholar 

  • Lupton, F.G.H. & Johnson, R. (1970). Breeding for mature plant resistance to yellow rust in wheat. Annals of Applied Biology 66, 137–143.

    Google Scholar 

  • McCoy, M.S. & Ellingboe, A.H. (1966). Major genes for resistance and the formation of secondary hyphae by Erysiphe graminis f. sp. hordei. Phytopathology 56, 683–686.

    PubMed  CAS  Google Scholar 

  • Macer, R.C.F. (1972). The resistance of cereals to yellow rust and its exploitation by plant breeding. Proceedings of the Royal Society, London, Series B. 181, 281–301.

    Google Scholar 

  • McIntosh, R.A. (1977). The nature of induced mutations affecting disease reaction in wheat. In ‘Induced Mutations Against Plant Disease’ (International Atomic Energy Agency, ed.), pp. 551–565. IAEA, Vienna.

    Google Scholar 

  • McIntosh, R.A. (1978). Breeding for resistance to powdery mildew in the temperate cereals. In ‘The Powdery Mildews’ (Spencer, D.M., ed.), pp. 237–257. Academic Press, London & New York.

    Google Scholar 

  • McRostie, G.P. (1919). Inheritance of anthracnose resistance as indicated by a cross between a resistant and a susceptible bean. Phytopathology 9, 139–148.

    Google Scholar 

  • McRostie, G.P. (1921). Inheritance of disease resistance in the common bean. Journal of the American Society of Agronomy 13, 15–32.

    Google Scholar 

  • Martens, J.W., Green, G.J. & Buchannon, K.W. (1983). Inheritance of resistance to Puccinia graminis f. sp. avenae in a Hordeum vulgare selection. Canadian Journal of Plant Pathology 5, 266–268.

    Google Scholar 

  • Martens, J.W., McKenzie, R.I.H. & Green, G.J. (1970). Gene-for-gene relationships in the Avena:Puccinia qraminis host-parasite system in Canada. Canadian Journal of Botany 48, 969–975.

    Google Scholar 

  • Martens, J.W., McKenzie, R.I.H. & Horder, D.E. (1980). Resistance to Puccinia graminis avenae and P. coronata avenae in the wild and cultivated Avena populations of Iran, Iraq and Turkey. Canadian Journal of Genetics and Cytology 22, 641–649.

    Google Scholar 

  • Martin, T.J. & Ellingboe, A.H. (1976). Differences between compatible parasite/host genotypes involving the Pm4 locus in wheat and the corresponding genes in Erysiphe qraminis f. sp. tritici. Phytopathology 66, 1435–1438.

    Google Scholar 

  • Masri, S.S. & Ellingboe, A.H. (1966). Primary infection of wheat and barley by Erysiphe graminis. Phytopathology 56, 389–395.

    PubMed  CAS  Google Scholar 

  • Mayama, S., Daly, J.M., Rehfeld, D.W. & Daly, C.R. (1975). Hypersensitive response of near-isogenic wheat carrying the temperature-sensitive Sr6 allele for resistance to stem rust. Physiological Plant Pathology 7, 35–47.

    Google Scholar 

  • Mayo, G.M.E. & Shepherd, K.W. (1980). Studies of genes controlling specific host-parasite interactions in flax and its rust. Heredity 44, 211–227.

    Google Scholar 

  • Metcalfe, D.R. (1966). Inheritance of loose smut resistance. III. Relationships between the “Russian” and “Jet” genes for resistance and genes in 10 barley varieties of diverse origin. Canadian Journal of Plant Science 46, 487–495.

    Google Scholar 

  • Miah, N.A.J. & Sackston, W.E. (1970). Genetics of pathogenicity in sunflower rust. Phytoprotection 51, 17–35.

    Google Scholar 

  • Michelmore, R.W., Norwood, S.M., Ingram, D.S., Crute, I.R. & Nicholson, P. (1984). The inheritance of virulence in Bremia lactucae to match resistance factors 3,4,5,6,8,9,10 and 11 in lettuce (Lactuca sativa). Plant Pathology 33, 301–315.

    Google Scholar 

  • Minogue, K.P. (1983). Do constant ranking and durability follow from polygenic inheritance? Canadian Journal of Plant Pathology 5, 54–55.

    Google Scholar 

  • Moseman, J.G. (1963). Relationship of genes conditioning pathogenicity of Erysiphe graminis f. sp. hordei on barley. Phytopathology 53, 1326–1330.

    Google Scholar 

  • Moseman, J.G. & Jørgensen, J.H. (1971). Identification of genes at the M1-a locus in barley for resistance to Erysiphe graminis f. sp. hordei. Crop Science 11, 547–550.

    Google Scholar 

  • Moseman, J.G. & Jørgensen, J.H. (1973). Differentiation of resistance genes at the m1=a locus in six pairs of isogenic barley lines. Euphytica 22, 189–196.

    Google Scholar 

  • Moseman, J.G. & Reid, D.A. (1961). Linkage relationship of genes conditioning resistance to leaf rust and powdery mildew in Frangor barley. Crop Science 1, 425–427.

    Google Scholar 

  • Moseman, J.G. & Schaller, C.W. (1960). Genetics of the allelic series at the Ml-a locus in barley and cultures of Erysiphe graminis f. sp. hordei that differentiate these alleles. Phytopathology 50, 736–741.

    Google Scholar 

  • Moseman, J.G., Wiberg, A. & Greely, L.W. (1965). Genes conditioning pathogenicity in Erysiphe graminis f. sp. hordei on 23 barley varieties. Phytopathologishe Zeitschrift 52, 209–221.

    Google Scholar 

  • Miller, K.O. & Haigh, J.C. (1953). Nature of ‘field resistance’ of the potato to Phytophthora infestans de Bary. Nature 171, 781–783.

    Google Scholar 

  • Nass, H.A., Pedersen, W.L., MacKenzie, D.R. & Nelson, R.R. (1981). The residual effects of some “defeated” powdery mildew resistance genes in isolines of winter wheat. Phytopathology 71, 1315–1318.

    Google Scholar 

  • Nelson, O.E. & Ullstrup, A.J. (1964). Resistance to leaf spot in maize. Journal of Heredity 55, 195–199.

    Google Scholar 

  • Nelson, R.R. (1978). Genetics of horizontal resistance in plant diseases. Annual Review of Phytopathology 16, 359–378.

    Google Scholar 

  • Nelson, R.R., Pedersen, W.L. & MacKenzie, D.R. (1982). The effect of pyramiding “defeated” wheat powdery mildew resistance genes on components of “slow mildewing”. Phytopathology 72, 932.

    Google Scholar 

  • Neervoort, W.J. & Parlevliet, J.E. (1978). Partial resistance of barley to leaf rust, Puccinia hordei. V. Analysis of the components of partial resistance in eight barley cultivars. Euphytica 27, 33–39.

    Google Scholar 

  • Noronha-Wagner, M. & Bettencourt, A.J. (1967). Genetic study of the resistance of Coffee spp. to leaf rust. I. Identification and behaviour of four factors conditioning disease reaction in Coffea arabica to twelve physiologic races of Hemileia vastrix. Canadian Journal of Botany 45, 2021–2031.

    Google Scholar 

  • Norwood, J.N. & Crute, I.R. (1984). The genetic control and expression of specificity in Bremia lactucae (lettuce downy mildew). Plant Pathology 33, 385–399.

    Google Scholar 

  • Norwood, J.N., Crute, I.R. & Lebeda, A. (1981). The location and characteristics of novel sources of resistance to Bremia lactucae Regel (downy mildew) in wild Lactuca L. species. Euphytica 30, 659–668.

    Google Scholar 

  • Norwood, J.M., Crute, I.R. & Phelps, K. (1984). Variation in seedling susceptibility to Bremia lactucae (lettuce downy mildew) in the absence of effective major resistance genes. Annals of Applied Biology 105, 147–157.

    Google Scholar 

  • Palmerley, R.R. & Callow, J.A. (1978). Common antigens in extracts of Phytophthora infestans and potatoes. Physiological Plant Pathology 12, 241–248.

    Google Scholar 

  • Parlevliet, J.E. (1976a). Evaluation of the concept of horizontal resistance in the barley/Puccinia hordei host - pathogen relationship. Phytopathology 66, 494–497.

    Google Scholar 

  • Parlevliet, J.E. (1976b). The genetics of seedling resistance to leaf rust, Puccinia hordei Otthl. in some spring barley cultivars. Euphytica 25, 249–254.

    Google Scholar 

  • Parlevliet, J.E. (1977). Evidence of differential interaction in the polygenic Hordeum vulgare Puccinia hordei relation during epidemic development. Phytopathology 67, 776–778.

    Google Scholar 

  • Parlevliet, J.E. (1978a). Further evidence of polygenic inheritance of partial resistance in barley to leaf rust, Puccinia hordei. Euphytica 27, 369–379.

    Google Scholar 

  • Parlevliet, J.E. (1978b). Race-specific effects of polygenic resistance of barley to leaf rust, Puccinia hordei. Netherlands Journal of Plant Pathology 84, 121–126.

    Google Scholar 

  • Parlevliet, J.E. & Zadoks, J.C. (1977). The integrated concept of disease resistance; a new view including horizontal and vertical resistance in plants. Euphytica 26, 5–21.

    Google Scholar 

  • Payne, G.A. & Yoder, O.C. (1978). Effect of the nuclear genome of corn on the sensitivity to Helminthosporium maydis race T toxin and on susceptibility to H. maydis race T. Phytopathology 68, 331–337.

    CAS  Google Scholar 

  • Perkins, J.N. & Hooker, R.L. (1981). Reactions of eighty-four sources of chlorotic lesion resistance in corn to three biotyopes of Helminthosporium turcicum. Plant Disease 65, 502–504.

    Google Scholar 

  • Person, C. (1959). Gene-for-gene relationships in host:parasite systems. Canadian Journal of Botany 37, 1101–1130.

    Google Scholar 

  • Person, C. & Ebba, T. (1975). Genetics of fungal pathogens. Genetics 79, 397–408.

    Google Scholar 

  • Person, C., Fleming, R, Cargeeg, L. & Christ, B. (1983). Present knowledge and theories concerning durable resistance. In ‘Durable Resistance in Crops’ (Lamberti, F., Waller, J.N. & Van der Graff, N.A., eds), pp. 27–44. Plenum Press, London & New York.

    Google Scholar 

  • Person, C. & Mayo, G.N.E. (1974). Genetic limitations on models of specific interactions between a host and its parasite. Canadian Journal of Botany 52, 1339–1347.

    Google Scholar 

  • Pink, D.A.C., Bennett, F.G.R., Caten, C.E. & Law, C.N. (1983). Correlated effects of homeologous group 5 chromosomes upon infection of wheat by yellow rust and powdery mildew. Zeitschrift fir Pflanzenzichtung 91, 278–294.

    Google Scholar 

  • Powers, L. & Hines, L. (1933). Inheritance of reaction to stem rust and barbing of awns in barley crosses. Journal of Agricultural Research 46, 1121–1129.

    Google Scholar 

  • Powers, N.R. & Sando, W.J. (1960). Genetic control of the host-parasite relationship in wheat powdery mildew. Phytopathology 50, 454–457.

    Google Scholar 

  • Putt, E.D. & Sackston, W.E. (1963). Studies on sunflower rust IV. Two genes, R1 and R2 for resistance in the host. Canadian Journal of Plant Science 43, 490–496.

    Google Scholar 

  • Rajaram, S., Luig, N.H. & Watson, I.A. (1971). The inheritance of leaf rust resistance in four varieties of common wheat. Euphytica 20, 574–585.

    Google Scholar 

  • Rieman, G.H. (1931). Genetic factors for pigmentation in the onion and their relation to disease resistance. Journal of Agricultural Research 42, 251–278.

    Google Scholar 

  • Riley, R. (1973). Genetic changes in hosts and the significance of diseases. Annals of Applied Biology 75, 128–132.

    Google Scholar 

  • Risser, G., Banihashemi, A. & Davis, D.W. (1976). A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66, 1105–1106.

    Google Scholar 

  • Roane, C.W. & Starling, T.N. (1970). Inheritance of reaction to Puccinia hordei in Barley. III. Genes in the cultivars Cebeda, Capa and Franger. Phytopathology 60, 788–790.

    Google Scholar 

  • Robinson, R.R. (1969). Disease resistance terminology. Review of Applied Mycology 48, 593–606.

    Google Scholar 

  • Robinson, R.R. (1971). Vertical resistance. Review of Plant Pathology 50, 233–239.

    Google Scholar 

  • Robinson, R.R. (1973). Horizontal resistance. Review of Plant Pathology 52, 483–501.

    Google Scholar 

  • Robinson, R.R. (1976). ‘Plant Pathosystems’. Springer Verlag, Berlin. 184 pp.

    Google Scholar 

  • Robinson, R.R. (1979). Permanent and impermanent resistance to crop parasites; a re-examination of the pathosystem concept with special reference to rice blast. Zeitschrift fir Pflanzenzichtung 83, 1–39.

    Google Scholar 

  • Roelfs, A.P., Baker, F.D. & McVey, D.V. (1982). An interactive computer-based system for comparing cultures of Puccinia graminis and postulating Sr genotypes in wheat. Phytopathology 72, 596–600.

    Google Scholar 

  • Roelfs, R.B. & McVey, D.V. (1979). Low infection types produced by Puccinia graminis f. sp.tritici and wheat lines with designated genes for resistance. Phytopathology 69, 722–730.

    Google Scholar 

  • Romero, S. & Erwin, D.C. (1969). Variation in pathogenicity among single-oospore cultures of Phytophthora infestans. Phytopathology 59, 1310–1317.

    Google Scholar 

  • Rouse, D.I., Nelson, R.R., MacKenzie, D.R. & Armitage, C.R. (1980). Components of rate-reducing resistance in seedlings of four wheat cultivars and parasitic fitness in six isolates of Erysiphe graminis f. sp. tritici. Phytopathology 70, 1097–1100.

    Google Scholar 

  • Russell, W.A. & Hooker, A.L. (1959). Inheritance of resistance in corn to rust, Puccinia sorghi Schw., and genetic relationships amoung different sources of resistance. Agronomy Journal 51, 21–24.

    Google Scholar 

  • Salmon, E.S. (1904). On Erysiphe graminis D.C. and its adaptive parasitism within the genus Bromus. Annals of Mycology 2, 255–267.

    Google Scholar 

  • Samborski, D.J. (1963). A mutation in Puccinia recondite Rob. ex Desm. f. sp. tritici to virulence on Transfer, Chinese Spring x Aegilops umbellulata. Zhuk. Canadian Journal of Botany 41, 475–479.

    Google Scholar 

  • Samborski, D.J. & Dyck, P.L. (1968). Inheritance of virulence in wheat leaf rust on the standard differential wheat varieties. Canadian Journal of Genetics and Cytology 10, 24–32.

    Google Scholar 

  • Samborski, D.J. & Dyck, P.L. (1976). Inheritance of virulence in Puccinia recondita on six backcross lines of wheat with single genes for resistance to leaf rust. Canadian Journal of Botany 54, 1666–1671.

    Google Scholar 

  • Samborski, D.J. & Dyck, P.L. (1982). Enhancement of resistance to Puccinia recondite by interactions of resistance genes in wheat. Canadian Journal of Plant Pathology 4, 152–156.

    Google Scholar 

  • Sanghi, R.K. & Luig, M.H. (1971). Resistance in wheat to formae speciales tritici and secalis of Puccinia graminis. Canadian Journal of Genetics and Cytology 13, 119–127.

    Google Scholar 

  • Saxena, K.M.S. & Hooker, A.L. (1968). On the structure of a gene for disease resistance in maize. Proceedings of the National Academy of Sciences, U.S.A. 61, 1300–1305.

    CAS  Google Scholar 

  • Schafer, J.F., Caldwell, R.M., Patterson, F.L. & Compton, L.E. (1963). Wheat leaf rust resistance combinations. Phytopathology 53, 569–573.

    Google Scholar 

  • Schaller, C.W. & Briggs, F.N. (1955). Inheritance of resistance to mildew, Erysiphe graminis hordei in the barley variety, Black Russian. Genetics 40, 421–428.

    PubMed  CAS  Google Scholar 

  • Scheffer, R.P. (1976). Host specific toxins in relation to pathogenesis and disease resistance. In ‘Encyclopedia of Plant Physiology, Vol. 4. Physiological Plant Pathology’ (Heitefuss, R. & Williams, P.H., eds), pp. 247–269. Springer Verlag, Berlin.

    Google Scholar 

  • Schertz, K.F. & Tai, Y.B. (1969). Inheritance of reaction of Sorghum bicolor to toxin produced by Periconia circinata. Crop Science 9, 621–624.

    Google Scholar 

  • Schnathorst, W.C. & DeVay, J.E. (1963). Common antigens in Xanthomonas malvacearum and Gossypium hirsutum and their possible relationship to host specificity and disease resistance. Phytopathology 53, 1142.

    Google Scholar 

  • Schwinghamer, E.R. (1959). The relation between radiation dose and the frequency of mutations for pathogenicity in Melampsora lini. Phytopathology 49, 260–269.

    CAS  Google Scholar 

  • Scott, P.R., Benedikz, P.W. & Cox, C.J. (1982). A genetic study of the relationship between height, time to ear emergence and resistance to Septoria nodorum in wheat. Plant Pathology 31, 45–60.

    Google Scholar 

  • Scott, P.R. & Hollins, T.W. (1977). Interactions between cultivars of wheat and isolates of Cercosporella herpatrichoides. Transactions of the British Mycological Society 69, 397–403.

    Google Scholar 

  • Scott, P.R., Johnson, R., Wolfe, M.S., Lowe, H.J.B. & Bennett, F.G.A. (1980). Host specificity in aerial parasites in relation to their control. In ‘Applied Biology V’ (Croaker, T.H., ed.), pp. 350–393. Academic Press, London & New York.

    Google Scholar 

  • Segal, A., Manisterski, J., Fischbeck, G. & Wahl, I. (1980). How plant populations defend themselves in natural ecosystems. In ‘Plant Disease, an Advanced Treatise’ (Horsfall, J.G. & Cowling, E.B., eds), pp. 76–98 Academic Press, New York.

    Google Scholar 

  • Sharp, E.L., Sally, B.K. & Taylor, G.A. (1976). Incorporation of additive genes for stripe rust resistance in winter wheat. Phytopathology 66, 794–797.

    Google Scholar 

  • Sharp, E.L. & Volin, R.B. (1970). Additive genes in wheat conditioning resistance to stripe rust. Phytopathology 60, 1146–1147.

    Google Scholar 

  • Shepherd, K.W. & Mayo, G.M.E. (1972). Genes conferring specific plant disease resistance. Science 175, 375–380.

    PubMed  CAS  Google Scholar 

  • Sidhu, G.S. (1975). Gene-for-gene relationships in plant parasitic systems. Science Progress, Oxford 62, 467–485.

    Google Scholar 

  • Sidhu, G.S. (1979). Genetic resistance and disease complexes. Proceedings of Symposium IX,International Congress of Plant Protection, Vol. 1. 182–186.

    Google Scholar 

  • Sidhu, G.S. (1984). Parasitic epistasis. Phytopathology 74, 382–384.

    Google Scholar 

  • Sidhu, G.S. & Person, C. (1971). Genetic control of virulence in Ustilaqo hordei. II. Segregations for higher levels of virulence. Canadian Journal of Genetics and Cytology 13, 173–178.

    Google Scholar 

  • Sidhu, G.S. & Person, C. (1972). Genetic control of virulence in Ustilaqo hordei. III. Identification of genes for host resistance and demonstration of gene-for-gene relations. Canadian Journal of Genetics and Cytology 14, 209–213.

    Google Scholar 

  • Sidhu, G.S. & Webster, J.M. (1977). Genetics of single and complex host-parasite interactions. In ‘Induced Mutations Against Plant Diseases’ (International Atomic Energy Agency, ed.), pp. 59–79. IAEA, Vienna.

    Google Scholar 

  • Sidhu, G.S. & Webster, J.M. (1979). Genetics of tomato resistance to the Fusarium - Verticillium complex. Physiological Plant Pathology 15, 93–98.

    Google Scholar 

  • Sidhu, G.S. & Webster, J.M. (1983). Horizontal resistance in tomato against the Meloidogyne Fusarium complex: an artefact of parasitic epistasis. Crop Protection 2, 205–210.

    Google Scholar 

  • Simons, M.D. (1972). Polygenic resistance to plant disease and its use in breeding resistant cultivars. Journal of Environmental Quality 1, 232–240.

    Google Scholar 

  • Simons, M.O. & Michel, L.J. (1964). International register of pathogenic races of Puccinia coronata var. avenae. Plant Disease Reporter 48, 763–766.

    Google Scholar 

  • Skipp, R.R. & Samborski, D.J. (1974). The effect of the Sr6 gene for host resistance on histological events during the development of stem rust in near-isogenic wheat lines. Canadian Journal of Botany 52, 1107–1115.

    Google Scholar 

  • Skovmand, B., Roelfs, A.P. & Wilcoxon, R.D. (1978). The relationship between slow-rusting and some genes specific for stem rust resistance in wheat. Phytopathology 68, 491–499.

    Google Scholar 

  • Slesinski, R.S. & Ellingboe, R.H. (1969). The genetic control of primary infection of wheat by Erysiphe qraminis f. sp. tritici. Phytopathology 59, 1833–1837.

    PubMed  CAS  Google Scholar 

  • Slesinski, R.S. & Ellingboe, A.H. (1970). Gene-for-gene interactions during primary infection of wheat by Erysiphe qraminis f. sp. tritici. Phytoplology 60, 1068–1070.

    Google Scholar 

  • Slesinski, R.S. & Ellingboe, A.H. (1971). Transfer of S from wheat to the powdery mildew fungus with compatible and incompatible parasite/host genotypes. Canadian Journal of Botany 49, 303–310.

    CAS  Google Scholar 

  • Stakman, E.C. (1914). A study in cereal rusts: physiological races. Minnesota Agricultural Experimental Station Bulletin No. 138. 56 pp.

    Google Scholar 

  • Stakman, E.C. & Levine, M.N. (1922). The determination of biologic forms of Puccinia qraminis on Triticum spp. Minnesota Experimental Station Technical Bulletin No. 8, 10 pp.

    Google Scholar 

  • Stakman, E.C., Levine, M.N. & Cotter, R.U. (1930). Origin of physiological forms of Puccinia qraminis through hybridisation and mutation. Scientific Agriculture 10, 707–720.

    Google Scholar 

  • Stakman, E.C. & Piemeisel, F.J. (1917). Biologic forms of Puccinia qraminis on cereals and grasses. Journal of Agricultural Research 5, 429–495.

    Google Scholar 

  • Stakman, E.C., Piemeisel, F.J. & Levine, M.N. (1918). Plasticity of biologic forms of Puccinia qraminis. Journal of Agricultural Research 15, 221–150.

    Google Scholar 

  • Starling, T.M., Pineda, C.R., Kuo-chun Chen & Moseman, J.G. (1963). Loci of genes conditioning resistance in several barley varieties to race 9 of Erysiphe graminis f. sp. hordei. Crop Science 3, 151–154.

    Google Scholar 

  • Statler, G.D. (1977). Inheritance of virulence of culture 73–47 of Puccinia recondite. Phytopathology 67, 906–908.

    Google Scholar 

  • Statler, G.D. (1979). Inheritance of pathogenicity of culture 70–1, Race 1 of Puccinia recondita tritici. Phytopathology 69, 661–663.

    Google Scholar 

  • Statler, G.P. & Gold, R.E. (1980). Comparative virulence of basidiospores and uredospores of three races of Melampsora lini. Phytopathology 70, 528–530.

    Google Scholar 

  • Steffenson, B.J., Wilcoxon, R.D. & Roelfs, A.P. (1984). Inheritance of resistance to Puccinia qraminis f. sp. secalis in barley. Plant Disease 68, 762–763.

    Google Scholar 

  • Stevenson, F.J., Schultz, E.S., Clark, C.F., Cash, L. & Bonde, R. (1937). Breeding for resistance to late blight in the potato. Phytopathology 27, 1059–1070.

    Google Scholar 

  • Stuckey, R.E. & Ellingboe, A.H. (1974). Elongation of secondary hyphae of Erysiphe qraminis f. sp. tritici in wheat with compatible and incompatible parasite/host genotypes. Phytopathology 64, 530–533.

    Google Scholar 

  • Stuckey, R.E. & Ellingboe, A.H. (1975). Effect of environmental conditions on 35S uptake by Triticum aestivum and transfer to Erysiphe graminis f. sp. tritici during primary infection. Physiological Plant Pathology 5, 19–26.

    CAS  Google Scholar 

  • Taylor, J.D. (1972). Races of Pseudomonas plsl and sources of resistance in field and garden peas. New Zealand Journal of Agricultural Research 15, 441–447.

    Google Scholar 

  • Taylor, J.D., Vivian, A. & Malik, A.N. (1984). Race structure in Pseudomonas syringae pv. pisi. Proceedings of the 2nd Pseudomonas Working Group, Sounion, Greece, 90–91.

    Google Scholar 

  • Tepper, C.S. & Anderson, R.J. (1984). The genetic basis of plant-pathogen interaction. Phytopathology 74, 1143–1145.

    Google Scholar 

  • The, T.T. & McIntosh, R.R. (1975). Cytogenetical studies in wheat. VIII. Telocentric mapping and linkage studies involving Sr22 in chromosome 7AL. Australian Journal of Biological Science 28, 531–538.

    Google Scholar 

  • Torp, J. & Anderson, B. (1982). Two dimensional electrophoresis of proteins from cultures of Erysiphe graminis f. sp. hordei. Physiological Plant Pathology 20, 349–357.

    Google Scholar 

  • Toxopeus, H.J. (1959). Notes on the inheritance of field resistance of the foliage of Solanum tuberosum to Phytophthora infestans. Euphytica 8, 117–124.

    Google Scholar 

  • Vanderplank, J.E. (1963). ‘Plant Diseases: Epidemics and Control.’ Academic Press, New York & London. 349 pp.

    Google Scholar 

  • Vanderplank, J.E. (1968). ‘Disease Resistance in Plants.’ Academic Press, New York & London. 206 PP.

    Google Scholar 

  • Vanderplank, J.E. (1971). Stability of resistance to Phytophthora infestans in cultivars without R genes. Potato Research 14, 263–270.

    Google Scholar 

  • Vanderplank, J.E. (1975). ‘Principles of Plant Infection.’ Academic Press, New York & London. 216 PP.

    Google Scholar 

  • Vanderplank, J.E. (1978). ‘Genetic and Molecular Basis of Plant Pathogenesis.’ Springer Verlag, Berlin. 167 pp.

    Google Scholar 

  • Vanderplank, J.E. (1982). ‘Host-Pathogen Interactions in Plant Disease.’ Academic Press, New York & London. 207 pp.

    Google Scholar 

  • Vanderplank, J.E. (1984). ‘Disease Resistance in Plants’ (2nd Edition). Academic Press, New York & London, 194 pp.

    Google Scholar 

  • Van der Zaag, D.E. (1959). Some observations on breeding for resistance to Phytophthora infestons. European Potato Journal 2, 268–286.

    Google Scholar 

  • Walker, J.C. (1930). Inheritance of Fusarium resistance in cabbage. Journal of Agricultural Research 40, 721–745.

    Google Scholar 

  • Walker, J.C. (1969). ‘Plant Pathology’ (3rd Edition). McGraw Hill, New York, 819 pp.

    Google Scholar 

  • Wallwork, H. & Johnson, R. (1984). Transgressive segregation for resistance to yellow rust in wheat. Euphytica 33, 123–132.

    Google Scholar 

  • Watson, I.A. (1957). Mutation for increased pathogenicity in Puccinia graminis var. tritici. Phytopathology 47, 507–509.

    Google Scholar 

  • Watson, I.A. & Luig, N.H. (1968). Progressive increase of virulence in Puccinia graminis f. sp. tritici. Phytopathology 58, 70–73.

    Google Scholar 

  • Wicks, Z.W. & Hammond, J.J. (1978). Screening of flax species for new sources of resistance to Melampsora lini (Ehrenb.) Lev. Crop Science 18, 7–10.

    Google Scholar 

  • Wilcoxon, R.D. (1981). Genetics of slow rusting in cereals. Phytopathology 71, 989–993.

    Google Scholar 

  • Wilkinson, D.R. & Hooker, A.L. (1968). Genetics of reaction to Puccinia sorqhi in ten corn inbred lines from Africa and Europe. Phytopathology 58, 605–608.

    Google Scholar 

  • Williams, M.D., Gough, F.J. & Ronder, M.R. (1966). Interaction of pathogenicity genes in Puccinia qraminis f. sp. tritici and reaction genes in Triticum aestivum ssp. vulgare ‘Marquis’ and ‘Reliance’. Crop Science 6, 245–248.

    Google Scholar 

  • Wimalajeewa, D.L.S. & DeVay, J.E. (1971). The occurrence and characterization of a common antigen relationship between Ustilaqo maydis and Zea mays. Physiological Plant Pathology 1, 523–535.

    CAS  Google Scholar 

  • Wise, R.P., & Ellingboe, A.H. (1983). Infection kinetics of Erysiphe graminis f. sp. hordei on barley with different alleles at the M1-a locus. Phytopathology 73, 1220–1222.

    Google Scholar 

  • Wolfe, M.S. (1972). The genetics of barley mildew. Review of Plant Pathology 51, 507–522.

    Google Scholar 

  • Wong, L.S.L., McKenzie, R.I.H., Harder, D.E. & Martens, J.W. (1983). The inheritance of resistance to Puccinia coronata and floret characteristics in Avena sterilis. Canadian Journal of Genetics and Cytology 25, 329–335.

    Google Scholar 

  • Yang, S.L., Moseman, J.G. & Ellingboe, A.H. (1972). The formation of elongating secondary hyphae of Erysiphe graminis and the segregatioon of Ml genes in barley. Phytopathology 62, 1219–1223.

    Google Scholar 

  • Yoder, O.C. (1973). A selective toxin produced by Phyllosticta maydis. Phytopathology 63, 1361–1366.

    CAS  Google Scholar 

  • Zadoks, J.C. (1961). Yellow rust in wheat. Studies in epidemiology and physiologic specialization. Tijdschrift over Pflantezeikten 67, 69–256.

    Google Scholar 

  • Zadoks J.C. & Schein, R.D. (1979). ‘Epidemiology and Plant Disease Management.’ Oxford University Press, New York. 427 pp.

    Google Scholar 

  • Zimmer, D.E. & Comstock, U.E. (1973). New genes for rust resistance in flax. Phytopathology 63, 777–780.

    Google Scholar 

  • Zimmer, D.E., Schafer, J.F. & Patterson, F.L. (1963). Mutations for virulence in Puccinia coronata. Phytopathology 53, 171–176.

    Google Scholar 

  • Zimmer, D.E., Schafer, J.F. & Patterson, F.L. (1965). Nature of fertilisation and inheritance of virulence in Puccinia coronata. Phytopathology 55, 1320–1325.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Crute, I.R. (1985). The Genetic Bases of Relationships between Microbial Parasites and their Hosts. In: Fraser, R.S.S. (eds) Mechanisms of Resistance to Plant Diseases. Advances in Agricultural Biotechnology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5145-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5145-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8776-6

  • Online ISBN: 978-94-009-5145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics