Skip to main content

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 17))

Abstract

Many fungi are pathogenic to plants, and yet plants in general continue to survive. Clearly, most species have effective means of resisting attack by the majority of potentially pathogenic fungi, the corollary being that parasitic fungi in general have a restricted range of hosts. Biotrophic fungi, such as the rusts, smuts and mildews, tend to have a much more restricted host range, frequently being limited to certain varieties of a single plant species, than do necrotrophic fungi — although even many of the latter are highly specific. The mechanistic determinants of this species specificity in host-parasite interactions are the subject of this Chapter. For example, why is a given plant species resistant to all strains of a particular fungal species (or forma specialis) when the fungus is known to be parasitic on other plants? Mechanisms of resistance to saprophytic fungi which have no known hosts ara not considered here, although some definitions of non-host resistance would include this category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aist, J.R. (1976). Papillae and related wound plugs of plant cells. Annual Review of Phytopathology 14, 145–163.

    Google Scholar 

  • Albersheim, P. & Anderson, A.J. (1971). Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proceedings of the National Academy of Sciences U.S.A. 68, 1815–1819.

    CAS  Google Scholar 

  • Arinze, A.E. & Smith, I.M. (1980). Antifungal furanoterpenoids of sweet potato in relation to pathogenic and non-pathogenic fungi. Physiological Plant Pathology 17, 145–155.

    CAS  Google Scholar 

  • Arneson, P.A. & Durbin, R.D. (1968). The sensitivity of fungi to CC-tomatine. Phytopathology 58, 536–537.

    Google Scholar 

  • Arntzen, C.J. (1972). Inhibition of photophosphorylation by tentoxin, a cyclic tetrapeptide. Biochimica et Biophysics Acta 283, 539–542. 56

    Google Scholar 

  • Bailey, J.R. & Deverall, B.J. (1971). Formation and activity of phaseollin in the interaction between bean hypocotyls (Phaseolus vulgaris) and physiological races of Colletotrichum lindemuthianum. Physiological Plant Pathology 1, 435–449.

    CAS  Google Scholar 

  • Bailey, J.R. & Mansfield, J.W. (eds) (1982). Phytoalexins. Blackie, Glasgow. 334 pp.

    Google Scholar 

  • Bailey, J.A., Rowell, P.M. & Arnold, G.M. (1980). The temporal relationship between infected cell death, phytoalexin accumulation and the inhibition of hyphal development during resistance of Phaseolus vulgaris to Colletotrichum lindemuthianum. Physiological Plant Pathology 17, 329–339.

    CAS  Google Scholar 

  • Beckman, C.H. & Halmos, S. (1962). Relation of vascular occluding reactions in banana roots to pathogenicity of root-invading fungi. Phytopathology 52, 893–897.

    Google Scholar 

  • Beckman, C.H. & Talboys, P.W. (1981). Anatomy of resistance. In ‘Fungal Wilt Diseases of Plants’ (Mace, M.E., Bell, A.R. & Beckman, C.H., eds), pp. 487–521. Academic Press, London.

    Google Scholar 

  • Beckman, C.H. & Zaroogian, G.E. (1967). Origin and composition of vascular gel in infected banana roots. Phytopathology 57, 11–13.

    CAS  Google Scholar 

  • Binder, R.G., Klisiewicz, J.M. & Waiss, A.C. (1977). Stimulation of germination of Puccinia carthami teliospores by polyacetylenes from safflower. Phytopathology 67, 472–474.

    CAS  Google Scholar 

  • Bull, C.A. & Smith, D.A. (1981). Pectic enzyme inhibition by the phytoalexin kievitone. Phytopathology 71, 206.

    Google Scholar 

  • Bushnell, W.R. (1979). The nature of basic compatibility: comparisons between pistil-pollen and host-parasite interaction. In ‘Recognition and Specificity in Plant Host-Parasite Interactions’ (Daly, J.M. & Uritani, I., eds), pp. 211–227. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Byrde, R.J.W. (1957). The varietal resistance of fruits to brown rot II. The nature of resistance in some varieties of cider apple. Journal of Horticultural Science 32, 227–238.

    Google Scholar 

  • Charudattan, R. & DeVay, J.E. (1972). Common antigens among varieties of Gossypium hirsutum and isolates of Fusarium and Verticillium species. Phytopathology 62, 230–234.

    Google Scholar 

  • Coley-Smith, J.R. (1960). Studies of the biology of Sclerotium cepivorum Berk IV. Germination of sclerotia. Annals of Applied Biology 48, 8–18.

    Google Scholar 

  • Coley-Smith, J.R. & Holt, R.W. (1966). The effect of species of Allium on germination in soil of sclerotia of Sclerotium cepivorum Berk. Annals of Applied Biology 58, 273–278.

    Google Scholar 

  • Coley-Smith, J.R. & King, J.E. (1969). The production by species of Allium of alkyl sulphides and their effect on the germination of sclerotia of Sclerotium cepivorum Berk. Annals of Applied Biology 64, 289–301.

    CAS  Google Scholar 

  • Cooper, R.M., Wardman, P.R. & Skelton, J.E.M. (1981). The influence of cell walls from host and non-host plants on the production and activity of polygalacturonide-degrading enzymes from fungal pathogens. Physiological Plant Pathology 18, 239–255.

    CAS  Google Scholar 

  • Cruickshank, I. & Perrin, D.R. (1960). Isolation of a phytoalexin from Pisum sativum L. Nature 187, 799–800.

    PubMed  CAS  Google Scholar 

  • Cruickshank, I. & Perrin, D.R. (1963). Studies on phytoalexins VI. The effect of some factors on its formation in Pisum sativum L. and the significance of pisatin in disease resistance. Australian Journal of Biological Science 16, 111–128.

    CAS  Google Scholar 

  • Cruickshank, I & Perrin, D.R. (1971). Studies on phytoalexins XI. The induction, antimicrobial spectrum and chemical assay of phaseollin. Phytopathologische Zeitschrift 70, 209–229.

    CAS  Google Scholar 

  • Défago, G. & Kern, H. (1983). Induction of Fusarium solani mutants insensitive to tomatine, their pathogenicity and aggressiveness to tomato fruits and pea plants. Physiological Plant Pathology 22, 29–37.

    Google Scholar 

  • Défago, G., Kern, H. & Sedlar, L. (1983). Genetic analysis of tomatine insensitivity, sterol content and pathogenicity for green tomato fruits in mutants of Fusarium solani. Physiological Plant Pathology 22, 39–43.

    Google Scholar 

  • DeVay, J.E. (1976). Protein specificity in plant disease development: protein sharing between host and parasite. In ‘Specificity in Plant Diseases’. (Wood, R.K.S. & Graniti, A., eds), pp. 199–212. Plenum Press, New York.

    Google Scholar 

  • DeVay, J.E., Wakeman, R.J., Kavanagh, J.A. & Charudattan, R. (1981). The tissue and cellular location of a major cross-reactive antigen shared by cotton and soil-borne fungal parasites. Physiological Plant Pathology 18, 59–66.

    Google Scholar 

  • Dickinson, S. (1970). Studies in the physiology of obligate parasitism. VII. The effect of a curved thigmotropic stimulus. Phytopathologische Zeitschrift 69, 115–124.

    CAS  Google Scholar 

  • Dickinson, S. (1971). Studies in the physiology of obligate parasitism. VIII. An analysis of fungal responses to thigmotropic stimuli Phytopathologische Zeitschrift 70, 62–70.

    Google Scholar 

  • Dickinson, S. (1972). Studies in the physiology of obligate parasitism. IX. The measurement of thigmotropic stimulus. Phytopathologische Zeitschrift 73, 347–358.

    Google Scholar 

  • Durbin, R.D. (1983). The biochemistry of fungal and bacterial toxins and their modes of action. In ‘Biochemical Plant Pathology’ (Callow, J.A., ed.), pp. 137–162. John Wiley, Chichester.

    Google Scholar 

  • Durbin, R.D. & Uchytil, T.F. (1971). The role of allicin in the resistance of garlic to Penicillium spp. Phytopathologica Mediterrenea 10, 227–230.

    CAS  Google Scholar 

  • Durbin, R.D. & Uchytil, T.F. (1977). A survey of plant insensitivity to tentoxïn. Phytopathology 67, 602–603.

    Google Scholar 

  • Fry, W.E. & Evans, P.H. (1977). Association of formamide hydro-lyase with fungal pathogenicity to cyanogenic plants. Phytopathology 67, 1001–1006.

    CAS  Google Scholar 

  • Fry, W.E. & Munch, D.C. (1975). Hydrogen cyanide detoxification by Gloeocercospora sorghi. Physiological Plant Pathology 7, 23–33.

    CAS  Google Scholar 

  • Fulton, N.D., Bollenbacker, K. & Templeton, G.E. (1965). A metabolite from Alternaria tenuis that inhibits chlorophyll production. Phytopathology 55, 49–51.

    CAS  Google Scholar 

  • Garas, N.A., Doke, N. & Kue, J. (1979). Suppression of the hypersensitive reaction in potato tubers by mycelial components from Phytophthora infestans. Physiological Plant Pathology 15, 117–126.

    CAS  Google Scholar 

  • Gilchrist, D.G. (1983). Molecular modes of action. In ‘Toxins and Plant Pathogenesis’ (Daly, J.M. & Deverall, B.J., eds), pp. 81–136. Academic Press, Sydney.

    Google Scholar 

  • Gilchrist, D.G. & Grogan, R.G. (1976). Production and nature of a host-specific toxin from Alternaria alternate f.sp. lycopersici. Phytopathology 66, 165–171.

    Google Scholar 

  • Gold, R.E. & Mendgen, K. (1983). Activation of teliospore germination in Lsomyces appendiculatus var. appendiculatus. II. Light and host volatiles. Phytopathologisehe Zeitschrift 108, 281–293.

    Google Scholar 

  • Grambow, H.J. & Riedel, S. (1977). The effect of morphogenically active factors from hoar. and non-host plants on the in vitro differentiation of infection structures of Puccinia graminis f.sp. tritici. Physiological Plant Pathology 11. 213–224.

    Google Scholar 

  • Hammerschmidt, R. (1984). Rapid deposition of lignin in potato tuber tissue as a response to fungi non-pathogenic on potato. Physiological Plant Pathology 24, 33–42.

    CAS  Google Scholar 

  • Hammerschmidt, R., Bonnen, A.M. & Bergstrom, G.C. (1983). Association of lignification with non-host resistance of cucurbits. Phytopathology 73, 829.

    Google Scholar 

  • Hargreaves, T.A., Mansfield, J.W. & Rossal, S. (1977). Changes in phytoalexin concentrations in tissues of the broad bean plant (Vicia faba L.) following inoculation with species of Botrytis. Physiological Plant Pathology 11, 227–242.

    CAS  Google Scholar 

  • Harper, A.M., Strange, R.N. & Langcake, P. (1981). Characterization of the nutrients required by Botrytis cinerea to infect broad bean leaves. Physiological Plant Pathology 19, 153–167.

    CAS  Google Scholar 

  • Heath, M.C. (1972). Ultrastructure of host and non-host reactions to cowpea rust. Phytopathology 62, 27–38.

    Google Scholar 

  • Heath, M.C. (1974). Light and electron microscope studies of the interactions of host and non-host plants with cowpea rust - Uromyces phaseoli var. v.ignae. Physiological Plant Pathology 4, 403–414.

    Google Scholar 

  • Heath, M.C. (1977). A comparative study of non-host interactions with rust fungi. Physiological Plant Pathology 10, 73–88.

    Google Scholar 

  • Heath, M.C. (1979a). Effects of heat shock, actinomycin D, cycloheximide and blasticidin S on non-host interactions with rust fungi. Physiological Plant Pathology 15, 211–218.

    CAS  Google Scholar 

  • Heath, M.C. (1979b). Partial characterization of the electron opaque deposits formed in the non-host plant, French bean, after cowpea rust infection. Physiological Plant Pathology 15, 141–148.

    Google Scholar 

  • Heath, M.C. (1981). The suppression of the development of silicon-containing deposits in French bean leaves by exudates of the bean rust fungus and extracts from bean rust-infected tissue. Physiological Plant Pathology 18, 149–155.

    Google Scholar 

  • Heath, M.C. & Higgins, V.J. (1973). In vitro and in vivo conversion of phaseollin and pisatin by an alfalfa pathogen Stemphylium botryosum. Physiological Plant Pathology 3, 107–120.

    CAS  Google Scholar 

  • Heuvel, J. van den, & Glazener, J.R. (1975). Comparative abilities of fungi pathogenic and non-pathogenic to bean (Phaseolus vulgaris) to metabolize phaseollin. Netherlands Journal of Plant Pathology 81, 125–137.

    Google Scholar 

  • Higgins, V.J. & Millar, R.C. (1969). Comparative abilities of Stemphylium botryosum and Helminthosporium turcicum to induce and degrade a phytoalexin from alfalfa. Phytopathology 59, 1493–1499.

    PubMed  CAS  Google Scholar 

  • Hutson, R.A. & Mansfield, J.W. (1980). A genetical approach to the analysis of mechanisms of pathogenicity in Botrytis/Vicia faba interactions. Physiological Plant Pathology 17, 309–317.

    CAS  Google Scholar 

  • Johnson, L.E.B. (1977). Cited in Bushnell, W.R. (1979). The nature of basic compatibility: comparisons between pistil-pollen and host-parasite interaction. In ‘Recognition and Specificity in Plant Host-Parasite Interactions’ (Daly, J.M. & Uritani, I., eds), pp. 211–227. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Jones, D.R., Graham, W.G. & Ward, E.W.B. (1975a). Ultrastructural changes in pepper cells in an incompatible interaction with Phytophthora infestans. Phytopathology 65, 1274–1285.

    Google Scholar 

  • Jones, D.R., Unwin, C.H. & Ward, E.W.B. (1975b). The significance of capsidiol induction in pepper fruit during an incompatible interaction with Phytophphora infestans. Phytopathology 65, 1286–1288.

    CAS  Google Scholar 

  • King, J.E. & Coley-Smith, J.R. (1969). Production of volatile alkyl sulphides by microbial degradation of synthetic alliin and alliin-like compounds in relation to germination of sclerotia of Sclerotium cepivorum Berk. Annals of Applied Biology 64, 303–314.

    CAS  Google Scholar 

  • Klisiewicz, J.M. (1972). Effect of host plant materials and temperature on germination of teliospores of Puccinia carthami. Phytopathology 62, 436–438.

    Google Scholar 

  • Klisiewicz, J.M. (1973). Effect of volatile substances from safflower on germination of teliospores of Puccinia carthami. Phytopathology 63, 795.

    Google Scholar 

  • Kojima, M. & Uritani, I. (1976). Possible involvement of furanoterpeniod phytoalexins in establishing host-parasite specificity between sweet potato and various strains of Ceratocystis fimbriata. Physiological Plant Pathology B, 97–111.

    Google Scholar 

  • Kunoh, H. & Ishizaki, H. (1975). Silicon levels near penetration sites of fungi on wheat, barley, cucumber and morning glory leaves. Physiological Plant Pathology 5, 283–287.

    CAS  Google Scholar 

  • Leach, R. (1955). Recent observations on the Botrytis infection of beans. Transactions of the British Mycological Society 38, 171.

    Google Scholar 

  • Leath, K.T. & Rowell, J.B. (1970). Nutritional and inhibitory factors in the resistance of Zea mays to Puccinia graminis. Phytopathology 60, 1097–1100.

    CAS  Google Scholar 

  • Macfoy, C.R. & Smith, I.M. (1979). Phytoalexin production and degradation in relation to resistance of clover leaves to Sclerotinia and Botrytis spp. Physiological Plant Pathology 14, 99–111.

    CAS  Google Scholar 

  • Mansfield, J.W. (1982). The role of phytoalexin in disease resistance. In ‘Phytoalexins’ (Bailey, J.A. & Mansfield, J.W., eds), pp. 253–282, Blackie, Glasgow.

    Google Scholar 

  • Mansfield, J.W. (1983). Antimicrobial compounds. In ‘Biochemical Plant Pathology’ (Callow, J.A., ed.), pp. 237–265. John Wiley, Chichester.

    Google Scholar 

  • Mansfield, J.W. & Bailey, J.R. (1982). Phytoalexins: current problems and future prospects. In ‘Phytoalexins’ (Bailey, J.E. & Mansfield, J.W., eds), pp. 319–322.

    Google Scholar 

  • Blackie, Glasgow. Mansfield, J.W., Hargreaves, J.R. & Boyle, F.C. (1974). Phytoalexin production by live cells in broad bean leaves infected with Botrytis cinerea. Nature 252, 316–317.

    Google Scholar 

  • Mansfield, J.W. & Hutson, R.A. (1980). Microscopical studies of fungal development and host responses in broad bean and tulip leaves inoculated with five species of Botrytis. Physiological Plant Pathology 17, 131–144.

    Google Scholar 

  • Mansfield, J.W. & Richardson, A. (1981). The ultrastructure of interactions between Botrytis species and broad bean leaves. Physiological Plant Pathology 19, 41–48.

    Google Scholar 

  • Martin, J.T. (1964). Role of cuticle in the defense against plant disease. Annual Review of Phytopathology 2, B1–100.

    Google Scholar 

  • Matta, A. (1971). Microbial penetration and immunization of uncongenial host plants. Annual Review of Phytopathology 9, 387–410.

    Google Scholar 

  • Mendgen, K. (1978). Attachment of bean rust cell wall material to host and non-host plant tissue. Archives of microbiology 119, 113–117.

    Google Scholar 

  • Millar, R.L. & Higgins, U.J. (1970). Association of cyanide with infection of birdsfoot trefoil by Stemphylium loti. Phytopathology 60, 104–110.

    CAS  Google Scholar 

  • Miller, S.A. & Maxwell, D.P. (1984). Ultrastructure of susceptible, host resistant and non-host resistant interactions of alfalfa with Phytophthora megasperma. Canadian Journal of Botany 62, 117–128.

    Google Scholar 

  • Mitchell, J.W. (1976). The effects of roots on the activity of sail-borne plant pathogens. In ‘Encyclopedia of Plant Physiology Vol. 4 Physiological Plant Pathology’ (Heitefuss, R. & Williams, P.H., eds), pp. 104–128. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Müller, K.O. (1958). Studies on phytoalexins. I. The formation and the immunological significance of phytoalexin produced by Phaseolus vulgaris in response to infections with Sclerotinia fructicola and Phytophthora infestans. Australian Journal of Biological Science 11, 275–300.

    Google Scholar 

  • Müller, K.O. & Bürger, H. (1940). Experimentelle Untersuchungen über die Phytophthora - Resistenz der Kartoffel-Zugleich ein Beitrag zum Problem der “erworbenen Resistenz” im Pflanzenreich. Arbeiten Biologische Reichsanstalt Mr Land-und Forst-wirtschaft (Berlin-Dahlem) 23, 189–231.

    Google Scholar 

  • Nishimura, S. & Kohmoto, K. (1983). Roles of toxins in pathogenesis. In ‘Toxins and Plant Pathogenesis’ (Daly, J.M. & Deverall, B.J., eds), pp. 137–157. Academic Press.

    Google Scholar 

  • O’Neill, T.M. & Mansfield, J.W. (1982). Mechanisms of resistance to Botrytis in narcissus bulbs. Physiological Plant Pathology 20, 243–56.

    Google Scholar 

  • Palmerley, R.A. & Callow, J.A.; (1978). Common antigens in extracts of Phytophthora infestans and potatoes. Physiological Plant Pathology 12, 241–248.

    Google Scholar 

  • Pearce, R.B. & Ride, J.P. (1960). Specificity of induction of the lignification response in wounded wheat leaves. Physiological Plant Pathology 16, 197–204.

    Google Scholar 

  • Perrin, D.R. (1964). The structure of phaseollin. Tetrahedron Letters 1, 29–35.

    Google Scholar 

  • Perrin, D.R. & Bottomley, W. (1962). Studies on phytoalexins. V. The structure of pisatin from Pisum sativum L. Journal of the American Chemical Society 84, 1919–1922.

    CAS  Google Scholar 

  • Pratt, R.G. (1978). Germination of oospores of Sclerospora sorghi in the presence of growing roots of host and non-host plants. Phytopathology 68, 1606–1613.

    Google Scholar 

  • Pueppke, S.G. & Van Etten, H.D. (1974). Pisatin accumulation and lesion development in peas infected with Aphanomyces euteiches, Fusarium solani f.sp. pisi, or Rhizoctonia solani. Phytopathology 64, 1433–1440.

    CAS  Google Scholar 

  • Pueppke, S.G. & Van Etten, H.D. (1976). The relation between pisatin and the development of Aphanomyces euteiches in diseased Pisum sativum. Phytopathology 66, 1174–1185.

    CAS  Google Scholar 

  • Ride, J.P. (1975). Lignification in wounded wheat leaves in response to fungi and its possible role in resistance. Physiological Plant Pathology 5, 125–134.

    CAS  Google Scholar 

  • Ride, J.P. (1980). The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiological Plant Pathology 16, 187–196.

    CAS  Google Scholar 

  • Ride, J.P. (1983). Cell walls and other structural barriers in defence. In ‘Biochemical Plant Pathology’ (Callow, J.A., ed.), pp. 215–236. John Wiley, Chichester.

    Google Scholar 

  • Ride, J.P. & Pearce, R.B. (1979). Lignification and papilla formation at sites of attempted penetration of wheat leaves by non-pathogenic fungi. Physiological Plant Pathology 15, 79–92.

    CAS  Google Scholar 

  • Rossall, S. & Mansfield, J.W. (1980). Investigation of the causes of poor germination of Botrytis spp. on broad bean leaves (Vicia faba L.). Physiological Plant Pathology 16, 369–382.

    CAS  Google Scholar 

  • Royle, D.J. (1976). Structural features of resistance to plant diseases. In ‘Biochemical Aspects of Plant-Parasite Relationships’ (Friend, J. & Threefall, D.R., eds), pp. 161–193. Academic Press, London.

    Google Scholar 

  • Scheffer, R.P. (1983). Toxins as chemical determinants of plant disease. In ‘Toxins and Plant Pathogenesis’ (Daly, J.M. & Deverall, B.J., eds), pp. 1–40. Academic Press, Sydney.

    Google Scholar 

  • Schroth, M.N. & Hendrix, F.F. (Jr) (1962). Influence of non-susceptible plants on the survival of Fusarium solani f. phaseoli in soil. Phytopathology 52, 906–909.

    Google Scholar 

  • Schroth, M.N. & Snyder, W.C. (1961). Effect of host exudates on chlamydospore germination of the bean root rot fungus Fusarium solani f. phaseoli. Phytopathology 51, 389–393.

    CAS  Google Scholar 

  • Sherwood, R.T. & Vance, C.P. (1976). Histochemistry of papillae formed in reed canarygrass leaves in response to noninfecting pathogenic fungi. Phytopathology 66, 503–510.

    Google Scholar 

  • Sherwood, R.T. & Vance, C.P. (1980). Resistance to fungal penetration in Gramineae. Phytopathology 70, 273–279.

    Google Scholar 

  • Shiraishi, T., Oku, H., Ouchi, S. & Tsuji, Y. (1977). Local accumulation of pisatin in tissues of pea seedlings infected by powdery mildew fungi. Phytopathologische Zeitschrift 88, 131–135.

    CAS  Google Scholar 

  • Smalley, E.B. & Hansen, N.N. (1962). Penicillium decay of garlic. Phytopathology 52, 666–678.

    Google Scholar 

  • Smith, D.R., Harrer, J.M. & Cleveland, T.E. (1982). Relation between production of extracellular kievitone hydratase by isolates of Fusarium and their pathogenicity on Phaseolus vulgaris. Phytopathology 72, 1319–1323.

    CAS  Google Scholar 

  • Staub, T., Dahmen, H. & Schwinn, F.J. (1974). Light-and scanning electron microscopy of cucumber and barley powdery mildew on host and non-host plants. Phytopathology 64, 364–372.

    Google Scholar 

  • Steele, J.A., Uchytil, T.F., Durbin, R.D., Bhatnagar, P. & Rich, D.H. (1976). Chloroplast coupling factor 1: a species-specific receptor for tentoxin. Proceedings of The National Academy of Sciences, U.S.A. 73, 2245–2248.

    CAS  Google Scholar 

  • Stewart, A. & Mansfield, J.W. (1984). Fungal development and plant response in detached onion, onion bulb scales and leaves inoculated with Botrytis aliii, B. cinerea, B. fabae and B. squamosa. Plant Pathology 33, 401–409.

    Google Scholar 

  • Stoll, A. & Seebeck, E. (1951). Chemical investigations on alliin, the specific principal of garlic. Advances in Enzymology 11, 377–400.

    CAS  Google Scholar 

  • Strange, R.N., Majer, J.R. & Smith, H. (1974). The isolation and identification of choline and betaine as the two major components in anthers and wheat germ that stimulate Fusarium graminearum in vitro. Physiological Plant Pathology 4, 277–290.

    CAS  Google Scholar 

  • Strange, R.N. & Smith, H. (1978). Effects of choline, betaine and wheat-germ extract on growth of cereal pathogens. Transactions of The British mycological Society 70, 193–199.

    CAS  Google Scholar 

  • Tani, T., Yamamoto, H., Kadota, G. & Naito, N. (1976). Development of rust fungi in oat leaves treated with blasticidin S, a protein synthesis inhibitor. Technical Bulletin of Faculty of Agriculture Kagawa University 27 (Ser. 59), 95–103.

    CAS  Google Scholar 

  • Tani, T., Yamashita, Y. & Yamamoto, H. (1980). Initiation of induced non-host resistance of oat leaves to rust infection. Phytopathology 70, 39–42.

    Google Scholar 

  • Teesdale, J., Daniels, D., Davis, W.C., Eddy, R. Jr. & Hadwiger, L.A. (1974). Physiological and cytological similarities between disease resistance and cellular incompatibility responses. Plant Physiology 54, 690–695.

    Google Scholar 

  • Tegtmeier, K.J. & Van Etten, H.D. (1982). The role of pisatin tolerance and degradation in the virulence of Nectria haematococca on peas: a genetic analysis. Phytopathology 72, 608–612.

    CAS  Google Scholar 

  • Turner, E.M.C. (1961). An enzymic basis for pathogenic specificity in Ophiobolus graminis. Journal of Experimental Botany 12, 169–175.

    CAS  Google Scholar 

  • Vance, C.P. & Sherwood, R.T. (1976). Cycloheximide treatments implicate papilla formation in resistance of reed canarygrass to fungi. Phytopathology 66, 498–502.

    Google Scholar 

  • Van der Molen, G.E., Beckman, C.H. & Rodehorst, E. (1977). Vascular gelation: a general response phenomenon following infection. Physiological Plant Pathology 11, 95–100.

    Google Scholar 

  • Van Etten, H.D. (1973). Differential sensitivity of fungi to pisatin and to phaseollin. Phytopathology 63, 1477–1482.

    Google Scholar 

  • Van Etten, H.D., Matthews, D.E. & Smith, D.A. (1982). metabolism of phytoalexins. In ‘Phytoalexins’ (Bailey, J.R. & Mansfield, J.W., eds), pp. 181–217. Blackie, Glasgow.

    Google Scholar 

  • Van Etten, H.D., Matthews, P.S., Tegtmeier, K.J., Dietert, M.F. & Stein, J.I. (1980). The association of pisatin tolerance and demethylation with virulence on pea in Nectria haematococca. Physiological Plant Pathology 16, 257–268.

    Google Scholar 

  • Ward, E.W.B. (1976). Capsidiol production in pepper leaves in incompatible interactions with fungi. Phytopathology 66, 175–176.

    CAS  Google Scholar 

  • Wynn, W.K. (1976). Appressorium formation over stomates by the bean rust fungus: response to a surface contact stimulus. Phytopathology, 136–146.

    Google Scholar 

  • Wynn, W.K. & Staples, R.C. (1981). Tropisms of fungi in host recognition. In ‘Plant Disease Control. Resistance and Susceptibility’ (Staples, R.C. & Toennîesson, G.H., eds), pp. 45–69. John Wiley & Sons, New York.

    Google Scholar 

  • Yoshikawa, m., Yamanchi, K. & masago, H. (1978). Glyceollin: its role in restricting fungal growth in resistant soybean hypocotyls infected with Phytophthora megasperma var sojae. Physiological Plant Pathology 12, 73–82.

    CAS  Google Scholar 

  • Young, P.A. (1926). Penetration phenomena and facultative parasitism. in Alternaria, Diplodia, and other fungi. Botanical Gazette 81, 258–279.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Ride, J.P. (1985). Non-Host Resistance to Fungi. In: Fraser, R.S.S. (eds) Mechanisms of Resistance to Plant Diseases. Advances in Agricultural Biotechnology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5145-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5145-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8776-6

  • Online ISBN: 978-94-009-5145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics