Skip to main content

Host-Range Control and Non-Host Immunity to Viruses

  • Chapter
Mechanisms of Resistance to Plant Diseases

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 17))

Abstract

The vast majority of plants are immune to the vast majority of plant viruses: attempts to infect produce no symptoms and no detectable virus multiplication. This effect, called non-host immunity, is one of the most intriguing problems in plant-virus interactions, and is one of the most difficult to investigate in ways that will produce meaningful results. The problem of non-host immunity is the converse of the question of what mechanisms determine host range, i.e. which species a particular virus will infect. Clearly an understanding of the mechanisms involved in determining host range might provide valuable clues to the biochemical bases of non-host immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atabekov, J.G. (1975). Host specificity of plant viruses. Annual Review of Phytopathology 13, 127–145.

    Article  Google Scholar 

  • Atabekov, J.G., Novikov, V.K., Vishnichenko, V.K. & Javakhia, U.G. (1970). A study of the mechanisms controlling the host range of plant viruses. H. The host range of hybrid viruses reconstituted in vitro and of free viral RNA. Virology 41, 108–115.

    Article  PubMed  CAS  Google Scholar 

  • Bald, J.G. & Tinsley, T.W. (1967a). A quasi-genetic model for plant virus host ranges. I. Group reactions within taxonomic boundaries. Virology 31, 616–624.

    Article  CAS  Google Scholar 

  • Bald, J.G. & Tinsley, T.W, (1967b). A quasi-genetic model for plant virus host ranges. II. Differentiation between host ranges. Virology 32, 321–327.

    Article  CAS  Google Scholar 

  • Bald, J.G. & Tinsley, T.W. (1967c). A quasi-genetic model for plant virus host ranges. III. Congruence and relatedness. Virology 32, 328–336.

    Article  CAS  Google Scholar 

  • Bawden, F.C. (1956). Reversible, host-induced, changes in a strain of tobacco mosaic virus. Nature 177, 302–304.

    Article  PubMed  CAS  Google Scholar 

  • Bawden, F.C. (1958). Reversible changes in strains of tobacco mosaic virus from leguminous plants. Journal of General microbiology 18, 751–766.

    PubMed  CAS  Google Scholar 

  • Dahl, D. & Knight, C.R. (1963). Some nitrous acid-induced mutants of tomato atypical mosaic virus. Virology 21, 580–586.

    Article  PubMed  CAS  Google Scholar 

  • Dodds, J.R. & Hamilton, R.I. (1974). masking of the RNA genome of tobacco mosaic virus by the protein of barley stripe mosaic virus in doubly-infected barley. Virology 59, 418–426.

    PubMed  CAS  Google Scholar 

  • Edwards, N.C., Gonsalves, D. & Provvidenti, R. (1983). Genetic analysis of cucumber mosaic virus in relation to host resistance: location of determinants for pathogenicity to certain legumes and Lactuca saligna. Phytopathology 73, 269–273.

    Article  Google Scholar 

  • Fraenkel-Conrat, H. (1976). RNA polymerase from tobacco necrosis virus-infected and uninfected tobacco: purification of the membrane-associated enzyme. Virology 72, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Furusawa, I. & Okuno, T. (1978). Infection with BMV of mesophyll protoplasts isolated from five plant species. Journal of General Virology 40, 489–491.

    Article  CAS  Google Scholar 

  • Gabriel, C.J., Derrick, K.S. & Shih, D.S. (1982). The synthesis and processing of the proteins of bean pod mottle virus in rabbit reticulocyte lysates. Virology 122, 476–490.

    Article  PubMed  CAS  Google Scholar 

  • Glover, J.F. & Wilson, T.N.A. (1982). Efficient translation of the coat protein cistron of tobacco mosaic virus in a cell-free system from Escherichia coli. European Journal of Biochemistry 122, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, K.H.J., Gill, D.S. & Symons, R.H. (1982). Highly purified cucumber mosaic virus-induced RNA-dependent RNA polymerase does not contain any of the full-length translation products of the genomic RNAs. Virology 123, 284–195.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, R.I. & Dodds, J.R. (1970). Infection of barley by tobacco mosaic virus in single and mixed infection. Virology 42, 266–268.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, R.I. & Nichols, C. (1977). The influence of bromegrass mosaic virus on the replication of tobacco mosaic virus in Hordeum vulgare. Phytopathology 67, 484–489.

    Article  CAS  Google Scholar 

  • Harrison, B.D., Murant, A.F. & Mayo, M.R. (1974). Distribution of determinants for symptom production, host range and nematode transmissibility between the two RNA components of raspberry ringspot virus. Journal of General Virology 22, 233–247.

    Article  Google Scholar 

  • Hiebert, E., Bancroft, J.B. & Bracker, C.E. (1968). The assembly in vitro of some small spherical viruses, hybrid viruses and other nucleoproteins. Virology 34, 492–508.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, T.J.U., Goodwin, P.B. & Whitfield, P.R. (1976). Occurrence of short particles in beans infected with the cowpea strain of TMU..II. Evidence that short particles contain the cistron for coat protein. Virology 71, 486–497.

    Article  PubMed  CAS  Google Scholar 

  • Hollings, M.A. & Brunt, A.R. (1981). Potyviruses. In ‘Handbook of Plant Virus Infections and Comparative Diagnosis’ (Kurstak, E., ed.) pp. 732–807. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Hollings, M., Komuro, Y. & Tochihara, H. (1975). Commonwealth Mycological Institute/Association of Applied Biologists Descriptions of Plant Viruses No. 154.

    Google Scholar 

  • Holmes, F.O. (1946). A comparison of the experimental host ranges of tobacco etch and tobacco mosaic viruses. Phytopathology 35, 643–659.

    Google Scholar 

  • Holmes, F.O. (1955). Additive resistances to specific viral diseases in plants. Annals of Applied Biology 42, 129–139.

    Article  Google Scholar 

  • Horvath, J. (1978a). New artificial hosts and non-hosts of plant viruses and their role in the identification and separation of viruses. III. Tobravirus group: tobacco rattle virus. Acta Phytopathologica Academiae Scientiarum Hungaricae 13, 51–55.

    Google Scholar 

  • Horvath, J. (1978b). New artificial hosts and non-hosts of plant viruses and their role in the identification and separation of viruses. IV. Tobamovirus group: tobacco mosaic virus and tomato mosaic virus. Acta Phytopathologica Academiae Scientiarum Hungaricae 13, 57–73.

    Google Scholar 

  • Horvath, J. (1979a). New artificial hosts and non-hosts of plant viruses and their role in the identification and separation of viruses. X. Cucumovirus group: cucumber mosaic virus. Acta Phytopathologica Academiae Scientiarum Hungaricae 14, 285–295.

    Google Scholar 

  • Horvath, J. (1979b). New artificial hosts and non-hosts of plant viruses and their role in the identification and separation of viruses. XI. Tymovirus group: turnip yellow mosaic virus and belladonna mottle virus. Acta Phytopathologica Academiae Scientiarum Hungaricae 14, 207–309.

    Google Scholar 

  • Huber, R., Hontilez, J. & Van Kamen, A. (1981). Infection of cowpea protoplasts with both the common strain and the cowpea strain of TMV. Journal of General Virology 55, 241–245.

    Article  Google Scholar 

  • Huber, R., Rezelman, G., Hibi, T. & Van Kampen, A. (1971). Cowpea mosaic virus infection of protoplasts from Samsun tobacco leaves. Journal of General Virology 34, 315–323.

    Article  Google Scholar 

  • Hull, R. & Covey, S.N. (1983). Does cauliflower mosaic virus replicate by reverse transcription? Trends in Biochemical Sciences 8, 119–121.

    Article  CAS  Google Scholar 

  • Ikegami, M. & Fraenkel-Conrat, H. (1980). Lack of specificity of virus-stimulated plant RNA-dependent RNA polymerases. Virology 100, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Jockusch, H. (1974). Zellfreie Bildung eines Replikationsenzyms. Naturwissenschaften 61, 267–269.

    Article  PubMed  CAS  Google Scholar 

  • Kassanis, B. & Varma, A. (1975). Commonwealth Mycological Institute/Association of Applied Biologists Descriptions of Plant Viruses No. 153.

    Google Scholar 

  • Kiho, Y., Machida, H. & Oshima, N. (1972). Mechanism determining the host specificity of tobacco mosaic virus. I. Formation of polysomes containing infecting viral genome in various plants. Japanese Journal of Microbiology 16, 451–459.

    PubMed  CAS  Google Scholar 

  • Kubo, S. & Takanami, Y. (1979). Infection of tobacco mesophyll protoplasts with tobacco necrotic dwarf virus, a phloem-limited virus. Journal of General Virology 42, 387–398.

    Article  Google Scholar 

  • Maekawa, K., Furusawa, I & Okuno, T. (1981). Effects of actinomycin-D and ultraviolet irradiation on multiplication of brome mosaic virus in host and non-host cells. Journal of General Virology 53, 353–356.

    Article  CAS  Google Scholar 

  • Morch, M., Zagorski, W. & Haenni, R.L. (1982). Proteolytic maturation of the turnip yellow mosaic virus polyprotein coded in vitro occurs by internal catalysis. European Journal of Biochemistry 127, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Morris-Krsinich, B.A.M. & Hull, R. (1981). Translation of turnip rosette virus RNA in rabbit reticulocyte lysates. Virology 114, 98–112.

    Article  PubMed  CAS  Google Scholar 

  • Motoyoshi, F., Bancroft, J.B. & Watts, J.W. (1974). The infection of tobacco protoplasts with a variant of brome mosaic virus. Journal of General Virology 25, 31–36.

    Article  Google Scholar 

  • Mouches, C., Candresse, T. & Bove, J.M. (1984). Turnip yellow mosaic virus RNA-replicase contains host and virus-encoded subunits. Virology 134, 78–90.

    Article  PubMed  CAS  Google Scholar 

  • Novikov, V.K. & Atabekov, J.G. (1970). A study of the mechanisms controlling the host range of plant viruses. I. Virus-specific receptors of Chenopodium amaranticolor. Virology 41, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Price, W.C. (1940). Comparative host range of six plant viruses. American Journal of Botany 27, 530–541.

    Article  Google Scholar 

  • Rackwitz, H.R., Rhode, W. & Sanger, H.-L. (1981). DNA-dependent RNA polymerase II of plant origin transcribes viroid RNA into full length copies. Nature 291, 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Rao, L.N. & Francki, R.I.B. (1982). Distribution of determinants for symptom production and host range on the three RNA components of cucumber mosaic virus. Journal of General Virology 61, 197–205.

    Article  Google Scholar 

  • Rochow, W.F. (1977). Dependent virus transmission from mixed infections. In ‘Aphids as Virus Vectors’ (Harris, K.F. & Maramorosch, K., eds) pp. 253–276. Academic Press, New York & London.

    Google Scholar 

  • Romaine, C. P. & Zaitlin, M. (1978). RNA-dependent RNA polymerases in uninfected and tobacco mosaic virus infected tobacco leaves: virus induced stimulation of a host polymerase activity. Virology 86, 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, F. & Takebe, I. (1974). Protein synthesis in tobacco mesophyll protoplasts induced by tobacco mosaic virus infection. Virology 62, 426–433.

    Article  PubMed  CAS  Google Scholar 

  • Schwinghamer, M.W. & Symons, R.H. (1977). Translation of the four major RNA species of cucumber mosaic virus in plant and animal cell-free systems and in toad oocytes. Virology 79, 88–108.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, J.G. (1969). The in vivo removal of protein from tobacco mosaic virus after inoculation of tobacco leaves. II. Some characteristics of the reaction. Virology 37, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Sulzinski, M.A. & Zaitlin, M. (1982). Tobacco mosaic virus replication in resistant and susceptible plants: in some resistant species virus is confined to a small number of initially infected cells. Virology 12, 12–19.

    Article  Google Scholar 

  • Sylvester, E.S. (1980). Circulative and propagative virus transmission by aphids. Annual Review of Entomology 25, 257–280.

    Article  Google Scholar 

  • Toriyama, S. & Peters, D. (1981). Differentiation between broccoli necrotic yellows virus and lettuce necrotic yellows virus by their transcriptase activities. Journal of General Virology 56, 59–66.

    Article  CAS  Google Scholar 

  • Van Regenmortel, M.H.V. (1981). Tobamoviruses. In ‘Handbook of Plant Virus Infections and Comparative Diagnosis’ (Kurstak, E., ed.) pp. 542–561. Elsevier/North Holland Biomedical Press. Amsterdam.

    Google Scholar 

  • Wade, B.L. & Zaumeyer, W.J. (1940). Genetic studies of resistance to alfalfa mosaic virus and of Agronomy 32, 127.

    Google Scholar 

  • Wade, B.L. & Zaumeyer, W.J. (1940). stringiness in Phaseolus vulgaris. Journal of the American Society of Agronomy 32, 127.

    Article  Google Scholar 

  • Wilson, T.M.A. (1984). Co-translational disassembly of tobacco mosaic virus in vitro. Virology 137, 255–265.

    Article  PubMed  CAS  Google Scholar 

  • Yarwood, C.E. (1979). Host passage effects with plant viruses. Advances in Virus Research 25, 169–190.

    Article  PubMed  CAS  Google Scholar 

  • Zaitlin,M., Beachy, R. & Bruening, G. (1977). Lack of molecular hybridization between RNAs of two strains of TMV: a reconsideration of the criteria for strain relationships. Virology 82, 237–241.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Fraser, R.S.S. (1985). Host-Range Control and Non-Host Immunity to Viruses. In: Fraser, R.S.S. (eds) Mechanisms of Resistance to Plant Diseases. Advances in Agricultural Biotechnology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5145-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5145-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8776-6

  • Online ISBN: 978-94-009-5145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics