Skip to main content

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 16))

Abstract

Phytotoxic effects of air pollutants are well known. In experiments with relatively higher concentration of pollutants, reduction in plant growth and productivity and visible injuries such as chlorosis and necrosis have been frequently observed. However, in the ambient atmosphere, air pollutants exist at low concentrations and at these concentration they may not induce any visible damage, although they may interefere with several metabolic or enzymic activities of the plants (Srivastava, 1978). Since hormones play an important role in growth and differentiation of plants and they also modify metabolic or enzymic activities, very often the effects of air pollutants on plants are interpreted in terms of changes in hormonal metabolism. In addition, applicalion of exogenous hormones modifies the effects of air pollutants on plants by interferring with the normal growth and metabolism. The present review relates to these interactions of air pollutants and hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abeles, A. L. and F. B. Abeles. 1972. Biochemical pathway of stress induced ethylene. Plant Physiol., 50: 496–498.

    Article  PubMed  CAS  Google Scholar 

  • Addicott, F. T. and J. L. Lyon. 1969. Physiology of abscisic acid and related substances. Ann. Rev. Plant Physiol., 20: 139–164.

    Article  CAS  Google Scholar 

  • Adedipe, N. O. and D. P. Ormrod. 1972. Hormonal regulation of ozone phytotoxicity in Raphanus sativus. Zeitschrift Pflanzen Physiol., 68: 254–258.

    CAS  Google Scholar 

  • Baba, T. and S. Sakai, 1974. Physiological studies on the mechanism of crop damage due to air pollution III. On the evolution of ethylene from plants by sulfur dioxide treatment (text in Japanese). Proc-Crop Sci. Soc. Japan., 44: 83–84.

    Google Scholar 

  • Beyer, E. M. Jr, and P. W. Morgan. 1969. Time sequence of the effect of ethylene on transport, uptake and decarboxylation of auxin. Plant Cell Physiol., 10: 787–799.

    CAS  Google Scholar 

  • Bressan, R. A., L. G. Wilson and P. Filner. 1978. Mechanism of resistance to sulfur dioxide in the cucurbitaceae. Plant Physiol., 61: 761–767.

    Article  PubMed  CAS  Google Scholar 

  • Bressan, R. A., L. G. Wilson, L Lecureux and P. Filner, 1978b. Use of ethylene and ethane emission to assay injury by sulfur dioxide. Plant Physiol., 61: s-59.

    Google Scholar 

  • Cracker, L. E. 1971. Ethylene production from ozone injured plants. Environ. Pollut., 1: 299–304

    Article  Google Scholar 

  • Dijak, M. and D. P. Ormrod. 1983. Some physiological and anatomical characteristics associated with differential ozone sensitivity among pea cultivars. Environ. Experim. Bot., 22: 395–402.

    Article  Google Scholar 

  • Ernest, L. C. and J. G. Valdovinus. 1971. Regulation of auxin levels in Colites blumei by ethylene. Plant Physiol., 48: 402–406.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, R. A., N. O. Adedipe and D. P. Ormrod. 1972. Abscisic acid protects bean leaves from ozone induced phytotoxicity. Can. J. Bot., 50: 2380–2391.

    Article  Google Scholar 

  • Guttenberger, H., O. Haertel and I. Thaler. 1979. Ethylene evolved by needles of spruce chronically stressed by sulfur dioxide. Phyton (Horn.), 19: 269–280.

    CAS  Google Scholar 

  • Hall, M. A., R. L. Brown and L. Ordin. 1971. inhibitory products of the action of peroxiacetyl nitrate upon indole-3-acetic acid. Phyto-chem., 10: 1233–1238.

    CAS  Google Scholar 

  • Hall, W. C and P. W. Morgan. 1964. Auxin-ethylene interrelationships In: Regulateurs Naturels de al Croissance vegetale. J. P Nitsch (ed.) Natl. Res. Sci. Paris pp. 725–745.

    Google Scholar 

  • Hodgson, R. H., D. S. Frear, H. R. Swanson and L. A. Regan. 1973 Alteration of diphanamid metabolism in tomato by ozone. Weed Sci., 21; 542–548.

    Google Scholar 

  • Hope, H. J. and L. Ordin. 1971. Metabolism of indole-3-acctic acid in tobacco exposed to the air pollutant peroxyacetyl nitrate. Plant Cell Physiol., 12: 849–857.

    CAS  Google Scholar 

  • Hull, H. M., F. W. Went and N. Yamada. 1952. Fluctuation in sensitivity of the Avena test due to air pollutants. Plant Physiol., 20: 182–187.

    Google Scholar 

  • Jager, H-J. 1974. Effects of SO2 fumigation on the activity of enzymes of the acid metabolism and the free amion acid contents in plants of different resistant (text in German). Zeitschrift fur Pflanzetran. Pflanzenschutz, 82: 139–148.

    Google Scholar 

  • Jager, H-J. 1976. Physiologische und biochemische Wirkungen von SO2 auf Pflanzen. Phyton, 18: 89–94.

    Google Scholar 

  • Koiwai, A. and T. Kisaki. 1973. Mixed function oxidase inhibitors protect plants from ozone injury. Agr. Biol Chem., 37: 2449–2450.

    Article  CAS  Google Scholar 

  • Kondo and K. Sugahara. 1978. Changes in transpiration rate of SO2 resistant and sensitive plant with SO2 fumigation and the participation of abscisic acid. Plant Cell Physiol., 19: 365–373.

    CAS  Google Scholar 

  • Lieberman, M. and E. Knegt. 1977. Influence of ethylene on inodje-3-acetic acid conjugation concentration in etiolated pea epicotyl tissue. Plant Physiol., 60: 475–477.

    Article  PubMed  CAS  Google Scholar 

  • Minato, T. and Y. Okazawa. 1978. Effect of ethylene treatment on auxin metabolism of potato tubers. J. Fac. Agric. Hokkaido Univ. 58: 535–547.

    CAS  Google Scholar 

  • Morgan, P. W., E. Beyer, Jr. and H. W. Gaussman. 1968. Ethylene effects on auxin physiology In: Biochemistry and Physiology of Plant Growth Substances. F. Wightmann and G. Sutterfield. (eds.) Rung Press, Ottawa, pp. 1255–1273.

    Google Scholar 

  • Morgan, P. W. and H. W. Gaussman 1966. Effect of ethylene on auxin transport. Plant Physiol., 41: 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Nagar, V. and H. S. Srivastava. 1979. Acceleration of senescence of maize leaf segments by aqueous hydrogen sulfide. Indian J. Plant Physiol., 22: 80–84.

    Google Scholar 

  • Ordin, L. and B. Propst. 1962. Effects of air borne oxidants on biological activity of indole acetic acid. Bot. Gazette, 123: 170–175.

    Article  CAS  Google Scholar 

  • Ormrod, D. P. and N. O. Adedipe. 1974. Protecting horticultural plants from atmospheric pollutants: A review. Hort. Science 9: 108–111.

    CAS  Google Scholar 

  • Ota, Y. 1974. Effects of ethylene as an air pollutant on plants (text in Japanese). J. Japan. Soc. Air Pollut., 9: 374.

    Google Scholar 

  • Ota, Y., M. Nakayama and H. Okino 1976. On the index property of sesame plant for ethylene as an air pollutant (text in Japanese). Crop. Sci. Soc. Jap. Lect. Meeting 16th: 125–126.

    Google Scholar 

  • Pauls, K. P. and J. E. Thompson. 1981. Effects of in vitro treatment with ozone on the physical and chemical properties of membranes. Physiol. Plant., 53: 255–262.

    Article  CAS  Google Scholar 

  • Pauls, K. P. and J.E. Thompson. 1982. Effects of cytokinins and antioxidants on the susceptibility of membranes to ozone damage. Plant Cell Physiol., 23: 827–832.

    Google Scholar 

  • Peiser, G. D. and S. F. Yang 1979. Ethylene and ethylene production from sulfur dioxide injured plants. Plant Physiol., 63: 142–145.

    Article  PubMed  CAS  Google Scholar 

  • Recalde-Manrique, L. and M. Diaz-Miguel. 1981. Evolution of ethylene by sulfur dust addition. Physiol. Plant., 53: 462–467.

    Article  CAS  Google Scholar 

  • Rich, S. A. 1964. Ozone damage to plants. Ann. Rev. Phytopath., 2: 253–266.

    Article  CAS  Google Scholar 

  • Rivo, J, N. Dror and R. Goren. 1982. Effect of ethylene on (C14) indole 3-acetic acid metabolism in leaf tissue of woody plants. Plant Physol, 70: 1265–1270.

    Article  Google Scholar 

  • Runeckles, V.C. and H.M. Resh. 1975. Effects of cytokinins on responses of been leaves to chronic ozone treatment. Atmos. Environ., 9: 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, S. M. 1962. Protection of plants against air oxidants: cucumber seedlings at extreme ozone levels. Plant Physiol., 37: 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, H. S. 1978. Mechanism of action of air pollutants on plants. Curr. Sci., 47: 525–531.

    CAS  Google Scholar 

  • Stillwell, W. and P. Hester. 1983. Kinetin increases water permeability of phosphatidylcholine lipid bilayers. Plant. Physiol., 71: 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Tingey, D. T., C. Standley and R. W. Field. 1976. Stress ethylene evolution: A measure of ozone effects on plants. Atmos. Environ 10: 969–974.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, H. and S. Rich. 1973. Anti senescent compounds reduce injury and steroid change in ozonated leaves and their chloroplasts. Phytopath., 63: 903–906.

    Article  CAS  Google Scholar 

  • Turrei, F. M. 1950. A study of the physiological effects of elemental sulfur dust on citrus fruits. Plant Physiol., 25: 13–62.

    Article  Google Scholar 

  • Uno, Y. and Miyake. 1972. Studies on physiological tobacco leaf spot IV. Ethylene production on physiological tobacco spot. Bull. Utsunomiya Tob. Expt. Stn., 11: 23–27.

    Google Scholar 

  • Walton, D. C. 1980. Biochemistry and physiology of abscisic acid. Ann. Rev. Plant Physiol., 31: 453–489.

    Article  CAS  Google Scholar 

  • Yang, S. F. and M. A. Saleh. 1973. Destruction of indole-3-acetic acid during the aerobic oxidation of sulfite. Phytochem., 12: 1463–1466.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht and Agro Botanical Publishers (India)

About this chapter

Cite this chapter

Srivastava, H.S. (1985). Plant Hormones in Relation to Air Pollution Injury. In: Purohit, S.S. (eds) Hormonal Regulation of Plant Growth and Development. Advances in Agricultural Biotechnology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5139-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5139-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8773-5

  • Online ISBN: 978-94-009-5139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics