Skip to main content

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 16))

  • 196 Accesses

Abstract

Several chapters in this volume will describe the various physiological effects of plant hormones and some of the current views regarding the mechanisms of action of plant hormones. The progress in this field has been quite spectacular in recent years but probably it would have been more so, if workers in this field were less fascinated by hormone effects on extension growth and had paid equal emphasis to other aspects which are not generally considered as growth processes. An understanding of hormone action is dependent on the location of the sites of action and the multiplicity of such sites is explicit in the large variety of the effects which the hormones evoke. The mechanisms of hormone action proposed so far, though based on considerable experimental evidence with respect to one or two aspects of hormone action, are quite often oversimplifications. Generalisation is certainly useful as a working hypothesis but if they are carried too far, truth recedes further in the background. Although there are considerable similarities between plant and animal life, in searching for unity, we should not forget the diversity. Thus, analogy between plant and animal hormone effects is certainly useful and sometimes it has speeded up development in this field but this may not be the case always.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Amrhein, N. 1977. The current states of cAMP in higher plants. Ann. Rev. Pl. Physiol., 28: 123–132.

    CAS  Google Scholar 

  • Bamberger, S. S. 1971. The effect of plant growth regulators on DNA. Phytochemistry, 10: 957–966.

    CAS  Google Scholar 

  • Barendse, G.W.M. 1983. Hormonal regulation of enzyme synthesis and activity. In: Aspects of Physiology & Biochemistry of Plant Hormones. S. S. Purohit (Ed.), Kalyani Publishers, New Delhi, pp. 1–68.

    Google Scholar 

  • Bengochea, T., J. H. Dodda, D. G. Evans, P. H. Jeric, B. Niepel, A. R. Shari and M. A. Hall. 1980. Studies on ethylene binding by cell free preparations from cotyledons of Phaseolus vulgaris L: Separation and characterization. Planta, 148: 397–406.

    CAS  Google Scholar 

  • Berry, M. and R. C. Sachar. 1982a. Gibberllic acid mediated activation of monophenolase in deembryonated half seeds of wheat (Triticum aestivum). Phytochemistry, 21: 585–590.

    CAS  Google Scholar 

  • Berry, M. and R. C. Sachar. 1982b. Expression of conserved message of poly A polymerase through hormonal control in wheat aleurone layers. FEBS Letters, 141: 164–168.

    PubMed  CAS  Google Scholar 

  • Berry M. and R. C. Sachar. 1983. Regulation of poly A polymerase activity and poly A+ RNA levels by auxin in pea epicotyls. FEBS Letters, 154: 139–144.

    CAS  Google Scholar 

  • Bhattacharya, K. and B. B. Biswas. 1982. Induction of a high affinity binding site for auxin in Avena root membranes. Phytochemistry, 21: 1207–1211.

    Google Scholar 

  • Biswas, A. K. and S. Mukherji. 1979. Penicillin induction of gibberellin and α -amylase biosynthesis in rice endosperm. J. Expt. Bot., 30: 43–51.

    CAS  Google Scholar 

  • Biswas, B. B. 1982. A new metabolic cycle involving glucose-6-phosphate and myoinositol phosphates during formation and germination of mungbean seeds. In: Recent Developments in Plant Sciences, (S. M. Sircar Memorial Volume). S. P. Sen (Ed.). Today & Tomorrows Printers & Publishers, New Delhi, pp. 161–172.

    Google Scholar 

  • Biswas, B. B. and P. Roy. 1978. Plant growth substances as modulators of transcription. In: Subcelluar Biochemistry, D. B. Roodin (Ed.) 5: 187–219. Plenum Publishing Corp., New York.

    Google Scholar 

  • Bittner, S., M. GorodeTsky, GHar-Paz, Y. Mizrahi and A. E. Richmond. 1977. Synthesis and biological effects of aromatic analogues of abscisic acid. Phytochemistry, 16: 1143–1151.

    CAS  Google Scholar 

  • Bonner, J. 1934. The relation of H-ions to the growth rate of the Avena coleoptile. Protoplasma, 27: 406–423.

    Google Scholar 

  • Bonner, J. 1949. Relation of respiration and growth in the Avena coleoptile, Am. J. Bot., 36: 429–436.

    PubMed  CAS  Google Scholar 

  • Burström, H.G. 1982. Cell growth, the proton pump and the malic acid buffer. In: Recent Developments in Plant Science, S. P. Sen (Ed.). Today & Tomorrows Printers & Publishers, New Delhi. pp. 51–59.

    Google Scholar 

  • Chin, R-C. and C. Kidston. 1971. Seleeture Associations of hormonal steroids with aminoacyl transfer RNAs and control of protein synthesis. Proc. Nat. Acad. Sci., 68: 2448–2452.

    PubMed  CAS  Google Scholar 

  • Chrispeels, M. J. and J. E. Varner. 1967. Hormonal control of Enzyme synthesis: On the mode of action of gibberllic acid and ABA in aleurone layers of barley. Pl. Physiol., 42: 1008–1016.

    CAS  Google Scholar 

  • Cleland, R. E. 1979. Auxin and H+ excretion: The state of our knowledge. In: Plant Growth Substances 1979. F. Skoog (Ed.) Springer Verlag, Berlin, pp. 71–78.

    Google Scholar 

  • Commoner, B. and K.V. Thimann. 1941. On the relation between growth and respiration in the Avena coleoptile. J. Gen. Physiol., 24: 279–296.

    PubMed  CAS  Google Scholar 

  • Das, J. L. 1974. In search of the site of action of plant growth substances. Ph. D. thesis, Kalyani University, Kalyani.

    Google Scholar 

  • Das, J. L., A. Datta, R. Mitra and S. P. Sen. 1980. Sites of action of plant growth substances: Growth Substance stimulation of RNA and protein synthesis in cell organelles. Pl. Biochem. J., (S. M. Sircar Memorial Volume) pp. 111–124.

    Google Scholar 

  • Datta, A., A. G. Datta and S. P. Sen. 1965a. The mechanism of action of plant growth substances In: Growth and Development in Plants. K. K.Nanda and R. D. Asana (Eds.). Today & Tomorrow Book Agency, New Delhi. pp. 11–31.

    Google Scholar 

  • Datta, A. and S. P. Sen. 1965a. The mechanism of action of plant growth substances: growth substance stimulation of amino acid incorporation into nuclear proteins. Biochem. Biophys. Acta., 107: 352–357.

    PubMed  CAS  Google Scholar 

  • Datta, A., S. P. Sen and A. G. Datta. 1965b. The effect of IAA on the synthesis in vitro of isocitrate lyase (EC 4.1.3.1) in potato tuber, Biochem. Biophys. Acta., 108: 147.

    PubMed  CAS  Google Scholar 

  • Davies, P. J. 1973. Current theories on the mode of action of auxin. Bot. Rev., 39: 139–171.

    CAS  Google Scholar 

  • Davies, P. J. and A. W. Glaston. 1971. Labeled Indole macromolecular conjugate from growing stems supplied with labeled indole acetic acid. Pl. Physiol., 47: 435–441.

    CAS  Google Scholar 

  • Deadsay, J.P.S. and R.C. Sachar. 1982. Hormonal control of peroxidase activity and its relationship with growth in mungbean seedlings. Pl. Sci. Letters, 26: 251–256.

    Google Scholar 

  • Erion, J. L. and J. E. Fox. 1981. Purification and properties of a protein which binds cytokinin-active 6-substituted purines. Pl. Physiol., 67: 156–162.

    CAS  Google Scholar 

  • Evans, M.L, 1983. The mechanism of action of auxin in the promotion of cell elongation. In: Aspects of Physiology and Biochemistry of Plant Hormones. S.S. Purohit (Ed.) Kalyani Publishers, New Delhi, pp. 69–92.

    Google Scholar 

  • Evins, W.H. and J.E. Varner. 1971. Hormone controlled synthesis of endoplasmic reticulum in barley aleurone cells. Proc. Natl. Acad. Sci., USA, 68: 1631–1633.

    PubMed  CAS  Google Scholar 

  • Fellenberg, G. 1969. Verandurungen des Nucleoproteins unter dem Einfluss von Auxin und Ascorbinsaure beider Wurzelneubildung an Erbsenepikotylen. Planta, 84: 324–338.

    CAS  Google Scholar 

  • Foster, R.J., D.H. McRae and J. Bonner. 1952. Auxin-induced growth inhibition a natural consequence of two point attachment, Proc. Natl. Acad. Sci., USA, 38: 1014–1022.

    PubMed  CAS  Google Scholar 

  • Gruen, H.E. 1959. Auxins and fungi. Ann. Rev. Microbiol. 10: 405–440.

    CAS  Google Scholar 

  • Grunwald, C. 1975. Plant Sterols, Ann. Rev. Pl. Physiol., 26: 209.

    CAS  Google Scholar 

  • Guha, J. and S.P. Sen. 1973. Antigibberellins of the Cucurbitaceae, Nature New Biol, 244: 137.

    Google Scholar 

  • Guha, J. and S.P. Sen. 1975. The cucurbitacins — A Review. Pl. Biochem. J., 2: 12–28.

    CAS  Google Scholar 

  • Higgins, T.J.U., J.A. Zwar and J.V, Jacobsen. 1977. Gibberellic acid enhances the level of translatable mRNA for α-amylase in barley aleurone layers. Nature, 260: 166–169.

    Google Scholar 

  • Hocking, T.J., J. Clapham and K.J. Cattell. 1978. Abscisic acid binding to subcellular fractions from leaves of Vicia faba. Planta, 138: 303–304.

    CAS  Google Scholar 

  • Jacobsen, J.V. and J.A, Zwar. 1974. Gibberellic acid and RNA synthesis in barley aleurone layers: Metabolism of rRNA and tRNA and of RNA containing polyadenylic acid sequence. Austr. J. Pl. Physiol., 1: 343–349.

    CAS  Google Scholar 

  • Jana, A. 1982. Chemical Environment, Gene Function and Morphogenetic Events. Ph. D. Thesis, Kalyani University, Kalyani.

    Google Scholar 

  • Jeric, P. H., A. R. Shaari and M. A. Hall. 1979. The compartmentation of ethylene in developing cotyledons of Phaseolus vulgris L. Planta, 144: 533–507.

    Google Scholar 

  • Johnson, K. D. and H. Kende. 1971. Hormonal control of lecithin synthesis in barley aleurone cells: Regulation of the CDP choline pathway by gibberellin. Proc. Natl. Acad. Sci., USA, 68: 2674–2677.

    PubMed  CAS  Google Scholar 

  • Jones, R. L. 1969a. Gibberellic acid and the fine struture of barley aleurone cells. IL changes during the synthesis and secretion of α-amylase. Planta, 88: 73–86.

    CAS  Google Scholar 

  • Jones, R. L. 1969b. The effect of ultracentrifugation on the fine structure and α-amylase production in barley aleurone cells, Pl. Physiol., 44:1428–1438.

    CAS  Google Scholar 

  • Kapoor, H. C and R. C. Sachar. 1976. Stimulation of ribonuclease acticity and its isoenzymes in germinating scads of cow pea (Vigna sinensis) by gibberellic acid and adenosine 3′, 5′-cyclic monophosphate.Experientia, 32: 558–560.

    PubMed  CAS  Google Scholar 

  • Kapoor, H. C. and R. C. Sachar. 1979. Modulation by gibberellic acid and adenosine 3′, 5′-cyclic monophosphate of starch hydrolysing activity of cowpea seedlings. Photochemistry, 18: 565–568.

    CAS  Google Scholar 

  • Kaur-Sawhney, R. and A. W. Glaston. 1982. On the physiological significance of polyamines in higher plants. In: Recent Development in Plant Sciences. (S. M. Sircar volume) S. P. Sen (Ed.) Today & Tomorrows Printers and Publishers, New Delhi.

    Google Scholar 

  • Khurana, J. P. and S. C. Maheshwari. 1978. Induction of flowering In: Lemna paucicostata by salicylic acid. Pl. Sci. Letters, 12: 127–131.

    Google Scholar 

  • Kessler, B. 1972. Hormonal and environmental modulation of gene expression in plant development. In: The Biochemistry of Gene Expression in Higher Organisms. J. K. Pollak and J. W. Lee (Eds.), D. Reidel Publishing Co. Dortrecht, Holland, pp. 333–356.

    Google Scholar 

  • Kessler, B. and I. Snir. 1969. Interactions in vitro between gibberellins and DNA. Biochem. Biophys. Acta., 195: 207–218.

    PubMed  CAS  Google Scholar 

  • Key, J. and J. C. Shannon. 1964. Enhancement by auxin of ribio nucleic acid synthesis in excised soyabean hypocotyl tissue. Pl. Physiol., 39: 360–364.

    CAS  Google Scholar 

  • Leopold, A. C. 1982. Hormonal regulatory systems in plants. In: Recent Development in Plant Sciences (S. M. Sircar Memorial Volume), S. P. Sen (Ed.) Today & Tomorrows Printers & Publishers, pp. 43–50.

    Google Scholar 

  • Letham, D. S. 1978. Cytokinins. In: Phytohormones and Related Compounds-A Comprehensive Treatise. D. S. Letham, J. Higgins and P. Z. Goddwins (Eds.) Vol. 1. Elsevier, Amsterdam, pp. 205–293.

    Google Scholar 

  • Libbert, E. and P. Silhengst. 1970. Interactions between plants and epiphytic bacteria regarding their auxin metabolism VII. Transfer of 14C indole acetic acid from epiphytic bacteria to corn coleoptiles. Physiol. Plant., 23: 480–487.

    CAS  Google Scholar 

  • Mandava, N. and J. W. Mitchel. 1971. New plant hormones: Chemical and biological investigations. Ind. Agriculturist, 15: 19–31.

    CAS  Google Scholar 

  • Marre, E. and R. Bianchetti. 1961. Metobolic responses to auxin VI. The effect of auxin on the oxidation reduction state of triphosphopyridine nucleotide. Biochem. Biophys. Acta, 48: 583–585.

    PubMed  CAS  Google Scholar 

  • Matthysse, A. G. and M. Abrams. 1970. A factor mediating interaction of Kinins with the genetic material. Biochem. Biophys. Acta, 199: 511–518.

    PubMed  CAS  Google Scholar 

  • Mathysse, A. G. and C. Phillips. 1969. A protein in intermediary in the interaction of a hormone with the genomes. Proc. Natl. Acad. Sci., U.S.A. 63: 897–903.

    Google Scholar 

  • Milborrow, B. V. 1974. The chemistry and physiology of abscisic acid. Ann. Rev. Pl. Physiol, 25:259–307.

    CAS  Google Scholar 

  • Mitra, R. 1968. Mechanism of Action of Plant Growth Substances. Ph. D. Thesis. Kalyani University, Kalyani.

    Google Scholar 

  • Mitra, R., J. Das, S. N. Seal and S. P. Sen. 1970. Interaction of plant growth substances with DNA. In: Symp. Macromolecules in Storage and Transfer of Biological Information, Trombay. pp. 51–57.

    Google Scholar 

  • Mitra, R. and S. P. Sen. 1965. Stimulation of the uptake of water and ions by indolyl-3-acetic acid: its dependents on nuclei acid and protein synthesis. Mature, 107: 861–862.

    Google Scholar 

  • Mitra, R. and S. P. Sen. 1968. The relationship between nucleic acid synthesis and plant growth substance action. Specificity of plant growth substances. Proc. Inter. Symp. Plant Growth Substances, Calcutta. pp. 233–238.

    Google Scholar 

  • Mitra, R. and S. P. Sen. 1975. Effect of some plant sterols, steroids and triterpenoids on RNA synthesis in plants. Pl. Biochem. J., 22: 82–97.

    Google Scholar 

  • Mondai, H. and B. B. Biswas. 1972. Abscisic acid as an inhibitor of RNA synthesis by RNA polymerase in vitro. Pl. & Cell Physiol., 13: 965–970.

    Google Scholar 

  • Mondai, H., R. K. Mondai and B. B. Biswas. 1972. The effect of indole acetic acid on RNA polymerase in vitro. Biochem. Biophys. Res. Commu., 49: 306–311.

    Google Scholar 

  • Nooden, L. D. and K. V. Thimann. 1963. Evidence for the requirement of RNA protein synthesis in auxin-treated tissues. Proc. Natl. Acad. Sci., USA. 50: 194

    PubMed  CAS  Google Scholar 

  • Porter, W.L. and K.V. Thimann. 1965. Molecular requirements for auxin action. I. Phytochemistry, 4: 229–243.

    CAS  Google Scholar 

  • Purohit, S.S. 1983. Environmental and hormonal regulation of stomatol movement. In: Aspects of Physiology and Biochemistry of Plant Hormones. S.S. Purohit (Ed.), Kalyani Publishers, New Delhi. pp. 201–216.

    Google Scholar 

  • Purohit. S.S. and K. Chandra. 1983. Monocarpic Senescence in Helianthus annuus L. II. Prevention of fruit-induced senescence, chlorophyll degradation and chlorophyllase activity by penicillin. Photo synthetica, 17: 223–226.

    CAS  Google Scholar 

  • Purohit S.S. and G.R. Purohit. 1983. Penicillin-induced morpho-physiological responses in soybean leaves. Comp. Physiol. Ecol., 8: 379–380.

    CAS  Google Scholar 

  • Reddy, A.S.N, and A. Datta. 1982. Presence of cytokinin-binding protein in ungerminated barley embryo. Ind. J. Biochem. Biophys., 19: 278–279.

    CAS  Google Scholar 

  • Reddy, A.S.N. and S.K. Sopory, and A. Datta. 1983. Purification and characterisation of a cytokinin-binding protein from barley embryo. Biochem. Intern., 6: 181–190.

    CAS  Google Scholar 

  • Rhodes, A. and R.B. Ashworth. 1952. Mode of action of growth regulators in plants. Nature, 169: 76.

    PubMed  CAS  Google Scholar 

  • Roy, P. and B.B. Biswas. 1977. A receptor protein for indole acetic acid from the plant chromatin and its role in transcription. Biochim. Biophys. Acta, 107: 345–357.

    Google Scholar 

  • Roychoudhury, R. 1964. Studies on some Aspects of Nucleic Acid Metabolism in plants. Ph. D. Thesis, Calcutta University, Calcutta.

    Google Scholar 

  • Roychoudhury, R., A. Datta and S. P. Sen, 1965. The mechanism of action of plant growth substances: The role of nuclear RNA in growth substance action. Biochim. Biophys. Acta, 107: 346–351.

    PubMed  CAS  Google Scholar 

  • Roychoudhury, R. and S.P. Sen. 1964a. Metabolic conversion of thymine 2- 14C and its incorporation into nuclear RNA of endosperm nuclei of Cocos mucifera Linn. Biochim. Biophys. & Res. Commu., 14: 7–11.

    CAS  Google Scholar 

  • Roychoudhury, R. and S.P. Sen. 1954b. Studies on the mechanism of auxin action: Auxin regulation of nucleic acid metabolism in pea internodes and coconut milk nuclei. Physiol. Plant., 17: 352–362.

    Google Scholar 

  • Roychoudhury, R. and S.P. Sen. 1964c. Hormonal regulation of nucleic acid metabolism and its significance in the mechanism of growth substance action. Bul. Bot. Soc Beng., 18: 191–198.

    CAS  Google Scholar 

  • Seal, S.N. and S.P. Sen. 1968. The role of growth substances in ageing tissues in relation to nucleic acid metabolism. In: Proc. Intern. Symp. Plant Growth Substances, Calcutta, S.M. Sircar (Ed.) pp. 171–186.

    Google Scholar 

  • Sen, S.P. and J.L. Das. 1982. Probable site (s) of plant hormone action In: Recent Development in Plant Sciences (S. M. Sircar Memorial Volume) S.P. Sen (Ed.) Today & Tomorrows Printers & Publishers, New Delhi. pp. 61–78.

    Google Scholar 

  • Sen Gupta, A. and S.P Sen, 1961a. The formation of auxin-bound protein, Nature, 192: 1290–1291.

    PubMed  CAS  Google Scholar 

  • Sen Gupta, A. and S. P. Sen. 1961b. Effect of auxin on phosphorus metabolism in coleoptile tissues. Nature, 192: 1291–1292.

    PubMed  CAS  Google Scholar 

  • Sen Gupta, A. and S. P. Sen. 1961c. Carbon dioxide fixation in auxin-treated tissue. Pl. Physiol., 36: 374–380.

    CAS  Google Scholar 

  • Sen Gupta, D. N. and S. P. Sen. 1982. Phytochrome regulation of RNA synthesis in isolated coconut nucli. Pl. Cell Physiol., 23: 1251–1258.

    CAS  Google Scholar 

  • Sen Gupta, D. N., J. K. Ghosh, B. R. Mitra, and S. P. Sen. 1981a. Influence of light and darkness on RNA synthesis in Xanthium. Can. J. Bot., 59: 1910–1917.

    CAS  Google Scholar 

  • Sen Gupta, D. N., J. K. Ghosh, and S. P. Sen. 1981b. Synthesis in leaves durirg initiation of the reproductive phase in rice: The short-day cultivar Rupsail. Pl. Cell Physiol., 22: 255–256.

    CAS  Google Scholar 

  • Stoddart, J. L., W. Briedebach, R. Nadau and L. Rappaport. 1974. Selective binding of 3H-gibberllin A1by protein fractions from dwarf pea epicotyls. Proc. Natl Acad. Sci., USA. 71: 3255–3259.

    PubMed  CAS  Google Scholar 

  • Stoddart, J.L. and M.A. Venis. 1980. Molecular and submolecular aspects of hormone action. In: Hormonal Regulation of Development. I. Molecular Aspects of Plant Hormones. Encyclopedia of Plant Physiology New Series, Vol 9: 445–510.

    Google Scholar 

  • Stoddart, J.L. and P.D. Williams. 1979. Interaction of 3H gibberellin A 1with a subcellular fraction from Lettuce (Lactusa sativa L.) hypocotyls III. Requirement for protein synthesis. Planta, 147: 264–268.

    CAS  Google Scholar 

  • Stowe, B.B. and M.A. Dottz. 1971. Probing a membrane matrix regulating hormone action I. The molecular length of effective lipids Pl. Physiol., 48: 559–565.

    CAS  Google Scholar 

  • Stowe, B.B. and J.B. Orbeiter. 1962. Growth promotions in pea stem sections. II. Bv natural oils and isoprenoid vitamins. Pl. Physiol, 37: 158–164

    CAS  Google Scholar 

  • Stuart, D.A. and R.L. Jones. 1978. The relationship between proton efflux and gibberellin stimulated growth in hypocotyl sections. Planta, 141: 180–183.

    Google Scholar 

  • Sussman, M.R. and H. Kende. 1978. In vitro cytokinin binding to a particulate fraction of tobacco cell. Planta, 140: 251–259.

    CAS  Google Scholar 

  • Takagami, T. and K. Yoshida. 1975. Isolation and purification of a cytokinin binding protein from tobacco leaves by affinity column chromatography, Biochem. Biophys. Commu., 67: 672–689.

    Google Scholar 

  • Taneja, S. R. and R. C. Sachar. 1977. Effect of auxin on multiple forms of o-diphenolase in germinating wheat embryos Phytochemistry, 16: 871–873.

    CAS  Google Scholar 

  • Teissere, M. P. Penon, R. B. Van Huystee, V. Azou and J. Ricard. 1975. Hormonal control of transcription in higher plants. Biochem. Biophys. Acta, 402: 391–402.

    PubMed  CAS  Google Scholar 

  • Tremolieres, A. and M. Lepage. 1971. Changes in lipid composition during greening of etiolated pea seedlings. Pl. Physiol, 47: 329–334.

    CAS  Google Scholar 

  • Thimann, K. V. 1973. Opening Lecture. 8th Intern. Plant Growth Substances Conference, Japan. pp. 3–6.

    Google Scholar 

  • Tsai, S. Y., M. J. Tsai, R. Schwartz, M. Kalimi, J. H. Clark and B. W. Omalley. 1975. Effects of oestrogen on gene expression in chick oviduct: Nuclear receptor level and initiation of transcription. Proc. Natl. Acad. Sci., 72: 4228–4232.

    PubMed  CAS  Google Scholar 

  • Varner, J. E. and G. R. Chandra. 1964. Hormonal control of enzyme synthesis in barley endosperm. Proc, Natl. Acad. Sci., USA. 52: 100–106.

    CAS  Google Scholar 

  • Veldstra, H. 1953. The relation of chemical structure to biological activity in growth substances. Ann. Rev. Pl. Physiol., 4: 151–998.

    Google Scholar 

  • Weigl, J. 1969. WechselwirKung pflanzlicher Wachstumshormone mit membranen. Z. Naturforsch., 24B: 1046–1052.

    Google Scholar 

  • West, C. A. 1980. New growth factors-summary of session In: Plant Growth Substances 1979. F. Skoog (Ed.) Spinger Verlag, Berlin. pp. 289–290.

    Google Scholar 

  • Wood, A. and L. C. Paleg. 1972. The influence of gibberllic acid on the permeability of model membrane-systems. Pl. Physiol., 50: 103–108.

    CAS  Google Scholar 

  • Yamaki, T. 1954. Effect of indole acetic acid upon oxygen uptake, carbon dioxide fixation and elongation of Avena coleoptile cylinders in the darkness. Sci. papers of the Cell of Gen. Educ., Univ., of Tokyo, 4:127–154.

    CAS  Google Scholar 

  • Yamamoto, K. R. and B. M. Alberts. 1976. Steroid receptors: Elements for modulation of eukaryotic transcription. Ann. Rev. Blochen., 45: 721–746.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht and Agro Botanical Publishers (India)

About this chapter

Cite this chapter

Sen, S.P. (1985). The Molecular Basis of Hormone Action. In: Purohit, S.S. (eds) Hormonal Regulation of Plant Growth and Development. Advances in Agricultural Biotechnology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5139-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5139-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8773-5

  • Online ISBN: 978-94-009-5139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics