Skip to main content

Cereal Transformation: Progress and Prospects

  • Chapter
  • 226 Accesses

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 15))

Abstract

Genetic modification of plants by man have been and continue to be central to our development of efficient agriculture. Natural genetic barriers, however, have established limits on manipulations possible to extend genetic rearrangements for enhanced productivity. In order to overcome these natural barriers, genetic engineering of plants has long been a goal of plant breeders and geneticists. The early work was controversial. It will not be reviewed here since recent developments have made the controversy mute. (For historical perpective see 19,20 and references therein.)

Information Paper. College of Agriculture Research Center, Washington State University, Pullman, Project No. 0605. Authors research is being supported by Department of Energy Contract No. DE-AT06;82ER12070 and USDA-CRGO Grant No. 82-CRCR-1-1112.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMY NK 1981. Identification of the molybdenum cofactor in chlorate- resistant mutants of Escherichia coli. J Bacteriol 148: 274–282.

    PubMed  CAS  Google Scholar 

  2. BEVAN MW, CHILTON M-D 1982. T-DNA of the Agrobacterium Ti and RI plasmids. Ann Rev Genet 16: 357–384.

    Article  PubMed  CAS  Google Scholar 

  3. BEVAN MW, FLAVELL RB, CHILTON M-D 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187.

    Article  CAS  Google Scholar 

  4. BINGHAM PM, MIDWELL MG, RUBIN, GM 1982. The molecular basis of P-M hybrid dysgenesis: The role of the P elements, a P-s train-specific transposon family. Cell 29: 995–1004.

    Article  PubMed  CAS  Google Scholar 

  5. BREGLIANO J-C, KIDWELL MG 1983. Hybrid dysgenesis determinants. In Mobile Genetic Elements, Shapiro JA ed., Academic Press New Yorkpp 363–410.

    Google Scholar 

  6. BRIGHT SWJ, NORBURY PB, FRANKLIN J, KIRK DW, WRAY JL 1983. A conditional-lethal cnx-type nitrate reductase-deficient barley mutant. Molec Gen Genet 189: 240–244.

    Article  CAS  Google Scholar 

  7. CALOS MP, MILLER JH 1980. Transposable elements. Cell 20: 579A–595.

    Article  Google Scholar 

  8. CAPECCHI MR 1980. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 2: 479A–488.

    Article  Google Scholar 

  9. CAPLAN A, HERRERA-ESTRELLA L INZE D, VAN HANTE E, VAN MONTAGU M, SCHELL J, AMBRYSKI P 1983. fcitroduction of genetic material into plant cells. Science 222: 815–821.

    Article  PubMed  CAS  Google Scholar 

  10. CLARKE L, CARBON J 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes,. Nature 287: 504–509.

    Article  PubMed  CAS  Google Scholar 

  11. DAILEY FA, WARNER RL, SOMERS DA, KLEINHOFS A 1982. Characteristics of a nitrate reductase in a barley mutant deficient in NADH nitrate reductase. Plant Physiol 69: 1200–1204.

    Article  PubMed  CAS  Google Scholar 

  12. DAVEY MR, COCKING EC, FREEMAN J, PEARCE N, TUDOR I 1980. Transformation of petunia protoplasts by isoated Agrobacterium plasmids. Plant Sci Lett 18: 307–313.

    Article  CAS  Google Scholar 

  13. FEDEROFF NV 1983. Controlling elements in maize. In Mobile Genetic Elements, Shapiro JA ed., Academic Press New York pp 1–63.

    Google Scholar 

  14. FRALEY R, PAPAHADJOPOULOS D 1981. Liposomes: The development of a new carrier system for introducing nucleic acids into plant and animal cells. Curr Topics Microbiol Immun 96: 171–191.

    Google Scholar 

  15. FRALEY RT, ROGERS SG, HORSCH RB, SANDERS PR, FLICK JS, ADAMS SP, BITTNER ML, BRAND LA, FINK CL, FRY JS, GALLUPPI GR, GOLDBERD SB, HOFFMAN NL, WOO SC 1983. Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  16. GARFINKEL DJ, SIMPSON RB, REAM LW, WHITE FF, GHORDON MP, NESTER EW 1981. Genetic analysis of crown gall: fine structure map of the T-DNA by site directed mutagenesis. Cell 27: 143–153.

    Article  PubMed  CAS  Google Scholar 

  17. GRAESSMANN A, GRAESSMANN M, MULLER C 1980. Microinjection of early SV40 DNA fragments and T antigen. In Methods in Enzymology 65, Grossman L and Moldave K eds. Academic Press New York. pp 816–825.

    Google Scholar 

  18. HERRERA-ESTRELLA L, DEPICKER A, VAN MONTAGU M, SCHELL J 1983. Expression of chimaeric genes transferred into plant cells using a Ti-plas mid-derived vector. Nature 303: 209A–213.

    Article  Google Scholar 

  19. KADO CI, KLEINHOFS A 1980. Genetic modification of plant cells through uptake of foreign DNA. In Perspectives in Plant Cell and Tissue Culture, Vasil IK ed., Int. Rev. Cytology, Suppl. 11B, Academic Press New York pp 47–80.

    Google Scholar 

  20. KETCHUM PA, CAMBIER HY, FRAZIER WA III, MADANSKY CH, NASON A 1970. In vitro assembly of Neurospora assimilalory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals. Proc Natl Acad Sci USA 66:1016–1023.

    Article  PubMed  CAS  Google Scholar 

  21. KLEINHOFS A, BEHKI R 1977. Prospects for plant genome modification by nonconventional methods. Ann Rev Genet 11: 79A–101.

    Article  Google Scholar 

  22. KLEINHOFS A, TAYLOR J, KUO TM, SOMERS DA, WARNER RL 1983. Nitrate reductase genes as selectable markers for plant cell transformation. In Genetic Engineering in Eukaryotes, Lurquin PF and Kleinhofs A eds., Plenum Press New York pp 215–231.

    Google Scholar 

  23. KRENS FA, MOLENDIJK L, WULLEMS GJ SCHILPEROORT RA 1982. In vitro transformation of plant protoplasts with Ti plasmid DNA. Nature 296:72–74.

    Article  CAS  Google Scholar 

  24. LEWIS R, DUNSMUIR P, RUBIN GM 1980. Terminal repeats of the Drosophila transposable element copia: Nucleotide sequence and genomic organization. Cell 21: 581; 588.

    Google Scholar 

  25. MARTON L, DUNG TM, MENDEL RR, MALIGA P 1982. Nitrate reductase deficient cell lines frm haploid protoplast cultures of Nicotiana plumbaginifolia.Molec Gen Genet 182: 301–304.

    Article  Google Scholar 

  26. MARTON L, SIDOROV V, BIASINI G, MALIGA P 1982. Complementation in somatic hybrids indictes four types of nitrate reductase deficient lines in Nicotiana plumbaginifolia. Molec Gen Genet 187: 1–3.

    Article  CAS  Google Scholar 

  27. MCCLINTOCK B 1956. Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8: 58–74.

    PubMed  Google Scholar 

  28. MCCLINTOCK B 1956. Controlling elements and the gene. Cold Spring Harbor Symp Quant Biol 21: 197–216.

    PubMed  CAS  Google Scholar 

  29. MENDEL RR, ALIKULOV ZA, LVOV NP, MULLER AJ 1981. Presence of the molybdenum-co factor in nitrate reductase-deficient mutant cell lines of Nicotiana tabacum. Molec Gen Genet 181: 395–399.

    Article  CAS  Google Scholar 

  30. MILLER JB, AMY KN 1983. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli K-12. J Bacteriol 155: 793–801.

    PubMed  CAS  Google Scholar 

  31. MULLER AJ, GRAFE R 1978. Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Molec Gen Genet 161: 67–76.

    Article  Google Scholar 

  32. NASON A, ANTOINE AD, KETCHUM PA, FRAZIER WA III, LEE DK 1970. Formation of assimilatory nitrate reductase by in vitro inter- cistronic complementation in Neurospora crassa. Proc Nat Acad Sci USA 65: 137–144.

    Article  PubMed  CAS  Google Scholar 

  33. NASON A, LEE K-Y, PAN S-S, KETCHUM PA, LAMBERTI A, DEVRIES J 1971. In vitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: Nitrate reductase from a Neurospora mutant and a component of molybdenum-enzymes. Proc Natl Acad Sci USA 68:3242– 3246.

    Article  PubMed  CAS  Google Scholar 

  34. OH JY, WARNER RL, KLEINHOFS A 1980. Effect of nitrate reductase deficiency upon growth, yield, and protein in barley. Crop Sci 20: 487–490.

    Article  CAS  Google Scholar 

  35. O’HARE K, RUBIN GM 1983. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.

    Article  PubMed  Google Scholar 

  36. REAM LW, GORDON MP 1982. Crown gall disease and prospects for genetic manipulation of plants. Science 218: 854–858.

    Article  PubMed  CAS  Google Scholar 

  37. ROBERTSON DS 1978. Characterization of a mutator system in maize. Mutation Res 51: 21–28.

    Article  Google Scholar 

  38. RUBIN GM, MIDWELL MG, BINGHAM PM 1982. The molecular basis of P- M hybrid dysgenesis: the nature of induced mutations. Cell 29:987– 994.

    Article  PubMed  CAS  Google Scholar 

  39. RUBIN GM, SPRADLING AC 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218: 348–353.

    Article  PubMed  CAS  Google Scholar 

  40. RUBIN GM, SPRADLING AC 1983. Vectors for P element-mediated gene transfer in Drosophila. Nuc Acids Res 11: 6341–6351.

    Article  CAS  Google Scholar 

  41. SPRADLING AC, RUBIN GM 1982. Transposition of cloned P elements into Drosophila germ line chromsomes. Science 218–341–347.

    Article  PubMed  CAS  Google Scholar 

  42. TAYLOR JL, BEDBROOK JR, GRANT FJ, KLEINHOFS A 1983. Reconstitution of plant nitrate reductase by Escherichia coli K12. J Molec Appl Genet 2: 261–271.

    CAS  Google Scholar 

  43. VAN MONTAGU M, SCHELL J 1981. The Ti plasmids of Agrobacterium. Curr Topics Microbiol Immun 96: 237–254.

    Google Scholar 

  44. VASIL IK, VASIL V 1980. Isolation and culture of protoplasts. fci Perspectives in Plant Cell and Tissue Culture, Vasil IK ed., Int. Rev.Cytology, Suppl. 11B, Academic Press New York pp 1–19.

    Google Scholar 

  45. WARNER RL, KLEINHOFS A 1981. Nitrate utilization by nitrate reductase-deficient barley mutants. Plant Physiol 67:740–743.

    Article  PubMed  CAS  Google Scholar 

  46. YADAV NS, VANDERLEYDEN J, BENNET D, BARNES WM, CHILTON M-D 1983. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79:6322–6326.

    Article  Google Scholar 

  47. ZAMBRYSKI P, HOLSTERS M, KRUGER K, DEPICKER A, SCHELL J, VAN MONTAGU M, GOODMAN H 1980, Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385–1391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Kleinhofs, A. (1985). Cereal Transformation: Progress and Prospects. In: Bright, S.W.J., Jones, M.G.K. (eds) Cereal Tissue and Cell Culture. Advances in Agricultural Biotechnology, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5133-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5133-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8770-4

  • Online ISBN: 978-94-009-5133-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics