Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 95))

Abstract

The degradation of metallic materials in buildings and other structures is frequently attributable to electrochemical corrosion processes. In this paper, general problems of corrosion prediction are first considered and it is shown that information derived from accelerated exposure tests or from investigations of electrochemical properties of idealised systems is often an inadequate guide to the behaviour of metallic components in real corrosive environments. Specific cases involving the durability of steel reinforcing bars in concrete and the behaviour of zinc-coated steel components in buildings are then discussed. These examples are chosen because they illustrate the difficulties involved in predicting service lives of metals that are exposed to complex and often ill-characterised environments of the sorts that may be encountered in constructional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frohnsdorff, G., L.W. Masters and J.W. Martin. An Approach to Improved Durability Standards for Building Materials and Components. National Bureau of Standards (U.S.) Technical Note 1120 (1980).

    Google Scholar 

  2. ASTM E632-82, Standard Practice for Developing Accelerated Tests to Aid Prediction of Service Life of Building Components and Materials. American Society for Testing and Materials (1982).

    Google Scholar 

  3. Shreir, L.L. and F.L. LaQue. Corrosion Testing and Determination of Corrosion Rates, in L.L. Shreir, ed., Corrosion, 2 vols. (London, Newnes-Butterworth, 2nd edition, 1976) pp. 20. 3–20. 105.

    Google Scholar 

  4. Pourbaix, M. Atlas d’Équilibres Électrochimiques ( Paris, Gauthier-Villars, 1963 ).

    Google Scholar 

  5. Pourbaix, M. Applications of Electrochemistry in Corrosion Science and in Practice. Corrosion Science 14 (1974) 25–83.

    Article  Google Scholar 

  6. Hines, J.C. Analysis of Complex Polarisation Curves. British Corrosion Journal 18 (1983) 10–14.

    Google Scholar 

  7. Edeleanu, C. and J.G. Hines. Modelling Approach to Corrosion Prediction. British Corrosion Journal 18 (1983) 6–9.

    Google Scholar 

  8. Mansfeld, F. New Approaches to Atmospheric Corrosion Research Using Electrochemical Techniques, in R.N. Parkins, ed., Corrosion Processes ( London, Applied Science Publishers, 1982 ) pp. 1–76.

    Google Scholar 

  9. Tuutti, K. Corrosion of Steel in Concrete. Swedish Cement and Concrete Research Institute (Stockholm) Research Report F04 (1982).

    Google Scholar 

  10. Page, C.L. and K.W.J. Treadaway. Aspects of the Electrochemistry of Steel in Concrete. Nature 297 (1982) 109–115.

    Article  Google Scholar 

  11. Longuet, P., L. Burglen and A. Zelwer. La Phase Liquide du Ciment Hydraté. Revue des Matériaux de Construction et de Travaux Publics 676 (1973) 35–41.

    Google Scholar 

  12. Schiessl, P. Zur Frage der zulässigen Rissbreite und der erforderlichen Betondeckung im Stahlbetonbau - unter besonderer Berücksichtigung der Karbonatisierung des Betons. DAfS, Heft 255 (1976) 39–49.

    Google Scholar 

  13. Treadaway, K.W.J., G. Macmillan, P. Hawkins and C. Fontenay. The Influence of Concrete Quality on Carbonation in Middle Eastern Conditions - A Preliminary Study, in A.P. Crane, ed., Corrosion of Reinforcement in Concrete Construction ( London, Society of Chemical Industry/Ellis-Horwood, 1983 ) pp. 101–118.

    Google Scholar 

  14. Sorensen, B. and E. Maahn. Penetration Rate of Chloride in Marine Concrete Structures. Nordic Concrete Research 1 (1982), 24. 1–24. 18.

    Google Scholar 

  15. Page, C.L., N.R. Short and A. El Tarras. Diffusion of Chloride Ions in Hardened Cement Pastes. Cement and Concrete Research 11 (1981) 395–406.

    Article  Google Scholar 

  16. Stern, M. and A.L. Geary. Electrochemical Polarisation A Theoretical Analysis of the Shape of Polarisation Curves. Journal of the Electrochemical Society 104 (1957) 56–63.

    Article  Google Scholar 

  17. Stern, M. and E.D. Weisert. Experimental Observations on the Relation between Polarisation Resistance and Corrosion Rate. Proceedings of the American Society for Testing and Materials 59 (1959) 1280–1291.

    Google Scholar 

  18. Andrade, C. and J.A. Gonzalez. Quantitative Measurements of Corrosion Rate of Reinforcing Steels Embedded in Concrete Using Polarisation Resistance Measurements. Werkstoffe und Korrosion 29 (1978) 515–519.

    Article  Google Scholar 

  19. Gonzalez, J.A., S. Algaba and C. Andrade. Corrosion of Reinforcing Bars in Carbonated Concrete. British Corrosion Journal 15 (1980) 135–139.

    Google Scholar 

  20. Page, C.L. and P. Lambert. Unpublished results.

    Google Scholar 

  21. Escalante, E., M. Cohen and A.II. Kahn. Measuring the Corrosion Rate of Reinforcing Steel in Concrete. National Bureau of Standards (U.S.) Report NBSIR 84–2853 (1984).

    Google Scholar 

  22. Clear, K.C. Cost Effective Rigid Concrete Construction and Rehabilitation in Adverse Environments. US Federal Highways Administration, FCP Annual Progress Report, Project 4K (1981).

    Google Scholar 

  23. Moore, J.F.A. The Performance of Cavity Wall-Ties. Building Research Establishment (U.K.) Information Paper IP 4/81 (1981); see also, Performance of Cavity Wall-Ties, BRE News 54 (1981) 9.

    Google Scholar 

  24. BS 1243: 1978 Specification for Metal Ties for Cavity Wall Construction. British Standards Institution. Amendment AMD 3651 (April 1981).

    Google Scholar 

  25. Jones, D. and D. Brinn. Zinc Coated Steels in Buildings. (The British Board of Agrément, Garston, Watford, U.K., 1983 ).

    Google Scholar 

  26. Gonzales, J.A. and C. Andrade. Effect of Carbonation, Chlorides and Relative Ambient Humidity on the Corrosion of Galvanised Rebars Embedded in Concrete. British Corrosion Journal 17 (1982) 21–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Page, C.L. (1985). Barriers to the Prediction of Service Life of Metallic Materials. In: Masters, L.W. (eds) Problems in Service Life Prediction of Building and Construction Materials. NATO ASI Series, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5125-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5125-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8766-7

  • Online ISBN: 978-94-009-5125-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics