Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 95))

Abstract

The service life prediction of inorganic materials is, at present, primarily deduced from studies on mechanical and chemical performance in given environments. Selected models of the behaviour of concrete structures are presented. They are either structural engineering models or materials science models. They can predict mechanical properties, frost resistance or behaviour regarding carbonation. The barriers to service life prediction are related to the complexity of multicomponent systems, to little known degradation mechanisms, to unsatisfactory accelerated tests and to insufficient preventive measures. Examples of chemical deterioration of concrete are given. They emphasize the need for more research in materials science and a closer collaboration between structural engineers and materials scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wittman, F. H., Modelling of Concrete Behavior. Contemporary European Concrete Research. The Swedish Concrete Inst., 171–190, 1981.

    Google Scholar 

  2. Mindess, S., Mechanical Performance of Cementitious Systems. Structure and Performance of Cements. P. Barnes Ed. Applied Sci. Publishers. 319–364, 1984.

    Google Scholar 

  3. Roelfstra, P. and Wittmann, F. H., Modelling the Time - Dependent Behavior of Concrete. Transactions of the 6th SMIRT. Vol. L. Paper L 1 /4, 1981.

    Google Scholar 

  4. Zaitvev, J. and Wittmann, F. H., Simulation of Crack propagation and Failure of Concrete. Mat. Struc. 14 (83) 357, 1981.

    Google Scholar 

  5. Mihashi, H. and Izumi, M., Stochastic Theory for Concrete Fracture. Cem. Concr. Res. 7, 411–421, 1977.

    Article  Google Scholar 

  6. Sereda, P. J., Feldman, R. F. and Ramachandran, V. S., Formation and Development of Structures in Hardened Cement Pastes. 7th Int. Congress on the Chemistry of Cements. Paris. Vol. I, VI - 1 /3, 1980.

    Google Scholar 

  7. Wittman, F. H., The Structure of Hardened Cement Pastes. A Basis for a Better Understanding of the Materials Properties. Proc. Conf. on Hydraulic Cement Pastes. Their Structure and Properties. 96–117, 1976.

    Google Scholar 

  8. Copeland, L. F. and Verbeck, G. J., Structure and Properties of Hardened Cement Pastes. A Principal Paper. 6th Int. Congress on the Chemistry of Cement. Moscow, 1974.

    Google Scholar 

  9. Powers, T. C. and Brownvard, T. L.., Studies of the Physical Poperties of the Hardened Portland Cement Paste. Portland Cement Association. Res. Bull 22, 1947.

    Google Scholar 

  10. Kendall, K., Howard, A. J. and Birchall, J. D., The relation between Porosity, Microstructue and Strength and the Approach to Advanced Cement - Based Materials. Phil. Trans. R. Soc. London. A 310, 139–153, 1983.

    Article  Google Scholar 

  11. Powers, T. C. and Helmuth, R. A., Theory of Volume Changes in Hardened Portland Cement Paste during Freezing. Proc. Highway Res. Board. 32, 1953.

    Google Scholar 

  12. Litvan, G. G., Freeze-Thaw Durability of Porous Building Materials, ASTM. Spec. Tech. Publ. 691, 1981.

    Google Scholar 

  13. Fagerlund, G., Testing of Frost Resistance. Int. Colloquium on Frost Resistance of Concrete. Vienna, 1980.

    Google Scholar 

  14. Powers, T. C., The Air Requirement of Frost Resistant Concrete. Proc. Highway Res. Board. 19, 1949.

    Google Scholar 

  15. Fagerlund, G., The Critical Degree of Saturation Method of Assessing the Freeze-Thaw Resistance of Concrete. Mat. Struct. Vol. 10, No. 58, 1977.

    Google Scholar 

  16. Pigeon, M., La Microstructure et la Résistance au Gel des Ciments et Bétons. Thèse Doc. Ing. Paris. VI - Juin 1984.

    Google Scholar 

  17. Litvan, G. G., Frost Action in Porous Systems. Int. Sem. on Durability of Concretes and Stones. St. Rémy-lès-Chevreuse, France, 95–108, 1981.

    Google Scholar 

  18. Fagerlund, G., Service Life of Concrete Structures. Ibid Ref. (1), 265–285, 1981.

    Google Scholar 

  19. Houst, Y., Roelfstra, P. E. and Wittmann, F. H., A Model to Predict Service Life of Concrete Structures. Int. Colloquium on Materials Science and Restoration. F. sslingen. W. Germany, 181–186, 1983.

    Google Scholar 

  20. Vénuat, M. et Alexandre J., De la Carbonation du Béton. Rev. Mat. Constr. 683, 421–427 (1968), 639, 469–481 (1968), 640, 5–22 (1969).

    Google Scholar 

  21. Regourd, M., Resistance of Concrete to Chemical Attacks. 32 RCA Rilem. Activity Report. Mat. Struct., 14, 80, 109–137, 1981.

    Google Scholar 

  22. Page, C. L., Short, N. R. and El Tarras, A., Diffusion of Chloride Tons in Hardened Cement Pastes. Cem. Concr. Res. 11, 3, 395–406, 1981.

    Article  Google Scholar 

  23. Regourd, M., Chemical Corrosion of Mineral Building Materials. Ibid Ref. 19. To appear in Bautenschutz + Bausanierung (1984).

    Google Scholar 

  24. Smolczyk, H. G., Structure and Characterization of Slags. Principal Paper. Theme IIT/l. 7th Int. Congress on the Chemistry of Cement. Paris. Vol. I, III - 1 /3, 1980.

    Google Scholar 

  25. Nikitina, L. V., Krassilnikov, K. G. and Lapchina, A. I., La Nature Physico -chimique des Autocontraintes des Ciments Expansifs. Ibid Ref. 23. Vol III, V. 39–44, 1980.

    Google Scholar 

  26. Regourd, M., Durability - Physico-chemical and Biological Processes Related to Concrete. Int. Workshop on Durability of Concrete Structures. Copenhagen (1983) Paper 1. 2.

    Google Scholar 

  27. Oberholster, R. E., Alkali Reactivity of Siliceous Rock Aggregates: Diagnosis of the Reaction, Testing of Cement and Aggregate and Prescription of Preventive Measures. 6th Int. Conf. Alkalies In Concrete, Copenhagen, 419–433, 1983.

    Google Scholar 

  28. Bakker, R. F. M., About the Cause of the Resistance of Blast-furnance Cement Concrete to the Alkali-Silica Reaction, 5th Int. Conf. on Alkali Reaction in Concrete. Cape Town, South Africa. S 252 /29, 1981.

    Google Scholar 

  29. Hobbs, D. W., Expansion of Concrete Due to Alkali-Silica Reaction. The Structural Engineer. Cement and Concrete Association Reprint, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Regourd, M. (1985). Barriers to the Prediction of Service Life of Inorganic Materials. In: Masters, L.W. (eds) Problems in Service Life Prediction of Building and Construction Materials. NATO ASI Series, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5125-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5125-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8766-7

  • Online ISBN: 978-94-009-5125-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics