Skip to main content

Influence of Time on Crack Formation and Failure of Concrete

  • Chapter
Application of Fracture Mechanics to Cementitious Composites

Part of the book series: NATO ASI Series ((NSSE,volume 94))

Abstract

First of all experimental results are summarized and discussed all of which document the influence of time on crack formation and failure of concrete. The observed behaviour can be explained qualitatively on the basis of a phenomenological approach. In this case the time-dependent degradation of the composite structure of concrete is considered. Refined methods are necessary for a quantitative prediction of the influence of time on crack formation and failure of concrete. It is shown that crack theory provides us with a powerful tool to study crack propagation under sustained load. If the elastic modulus is replaced by a time-dependent operator crack growth can be linked with creep of the material. In this way life-time of concrete under sustained load can be predicted realistically. In addition a stochastic model based on rate theory is outlined. This model enables us in principle to predict failure under arbitrary loading conditions including high rate and impact. Variability of strength can be determined on the basis of structural parameters. Mechanisms of crack growth are finally discussed. It is concluded that crack growth is a rate process similar to creep. So far there i s no direct evidence of stress corrosion. Degradation mechanisms of porous materials such as crystallisation pressure, however, can be fortified by an external load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rasch, C., Spannungs-Dehnungs-Linien des Betons und Spannungsverteilung in der Biegedruckzone bei konstanter Verformungsgeschwindigkeit, Deutscher Ausschuss für Stahlbeton, Schriftenreihe, Heft 154 (1962).

    Google Scholar 

  2. Wittmann, F.H., and Y.B. Zaitsev, Verformung und Bruchvorgang poröser Baustoffe bei kurzeitiger Belastung und Dauerlast, Deutscher Ausschuss für Stahlbeton, Schriftenreihe, Heft 232 (1974).

    Google Scholar 

  3. Rüsch, H., Sell, R., Rasch, C., Grasser, E., Hummel, A., Wesche, K., and Flatten, H., Festigkeit und Verformung von unbewehrtem Beton unter konstanter Dauerlast, Deutscher Ausschuss fUr Stahlbeton, Schriftenreihe, Heft 198 (1968).

    Google Scholar 

  4. Siemes, A. J. M., vermoeiing van beton, deel l: drukspanningen, CUR-VB, rapport 112 (1983).

    Google Scholar 

  5. Siemes, A.J.M., Fatigue of Plain Concrete in Uniaxial Compression, Proc. IABSE Colloquium Fatigue of Steel and Concrete Structures, Lausanne (1982).

    Google Scholar 

  6. Holzapfel, F., Das Verhalten von Zementstein unter dynamischer Beanspruchung, Dissertation, RWTH, Aachen (1970).

    Google Scholar 

  7. Ziegeldorf, S., Phenomenological Aspects of the Fracture of Concrete, in Fracture Mechanics of Concrete, ed. F.H. Wittmann, Elsevier Science Publishers, Amsterdam (1983).

    Google Scholar 

  8. Zaitsev, Y.B., Crack Propagation in a Composite Material, in Fracture Mechanics of Concrete, ed. F.H. Wittmann, Elsevier Science Publishers, Amsterdam (1983).

    Google Scholar 

  9. Zaitsev, Y.B., and Wittmann, F.H., Simulation of crack propagation and failure of concrete, Mat. and Struct., 14 (1981), 357–365.

    Google Scholar 

  10. Wittmann, F.H., and Zaitsev, Y.B., Behaviour of hardened cement paste and Concrete under high sustained load, Proc. Int. Conf. on Mechanical Behaviour of Materials, Kyoto, Japan, Vol. IV (1971), 84–95.

    Google Scholar 

  11. Wittmann, F.H., Roelfstra, P.E., and Sadouki H., Simulation and analysis of composite structures, (to be published in Mat. Sci. Eng. 1984 ).

    Google Scholar 

  12. Mihashi, H., and Izumi, M., A stochastic theory for concrete fracture, Cem. Concr. Res. 7 (1977), 411–422.

    Article  Google Scholar 

  13. Mihashi, H., A stochastic theory for fracture of concrete, in Fracture Mechanics of Concrete, ed. F.H. Wittmann, Elsevier Science Publishers, Amsterdam (1983).

    Google Scholar 

  14. Mihashi, H., and Wittmann, F.H., Stochastic approach to study the influence of rate of loading on strength of concrete, Heron (The Netherlands) 25 (1980) No 3.

    Google Scholar 

  15. Zech, B., and Wittmann, F.H., Probabilistic approach to describe the behaviour of materials, Nucl. Eng. Design 48 (1978), 575–584.

    Article  Google Scholar 

  16. Zech, B., and Wittmann, F.H., Variability and mean value of strength of concrete as function of load, J. Amer. Concr. Inst. 77 (1980) 358–362.

    Google Scholar 

  17. Okada, T., and Sines, G., Crack coalescence and microscopic crack growth in the delayed fracture of alumina, J. Amer. Cer. Sce. 66 (1983) 719–725.

    Article  Google Scholar 

  18. Charles, R.J., Static fatigue of glass I, J. Appl. Phys. 29 (1958) 1549–1553.

    Article  ADS  Google Scholar 

  19. Charles, R.J., Static fatigue of glass II, J. Appl. Phys. 29 (1958) 1554–1560.

    Article  ADS  Google Scholar 

  20. Michalske, T.A., and Freiman, S.W., A molecular interpretation of stress corrosion in silica, Nature 295 (1982) 511–512.

    Article  ADS  Google Scholar 

  21. Lawn, B.R., Physics of fracture, J. Amer. Cer. Soc. 66 (1983) 83–91.

    Article  Google Scholar 

  22. Krokosky, E.M., Static fatigue in hydrated Portland cement, Mat. and Struct. 6 (1973) 447–452.

    Google Scholar 

  23. Barrick II, J. E., and Krokosky, E.M., The effects of temperature and relative humidity on static strength of hydrated Portland cement, Journal of Testing and Evaluation 4 (1976) 61–73.

    Article  Google Scholar 

  24. Shah, S.P., and Chandra, S., Fracture of concrete subjected to cyclic and sustained loading, J. Amer. Concr. Inst. 67 (1970) 816–825.

    Google Scholar 

  25. Tait, R.B., Fatigue and fracture of cement mortar, PhD dissertation, University of Cape Town (1984).

    Google Scholar 

  26. Wittmann, F. H., Bestimmung physikalischer Eigenschaften des Zementsteins, Deutscher Ausschuss für Stahlbeton Schriftenreihe Heft 232 (1974).

    Google Scholar 

  27. Wittmann, F.H., Grundlagen eines Modells zur Beschreibung charakteristischer Eigenschaften des Betons, Deutscher Ausschuss für Stahlbeton Schriftenreihe Heft 290 (1977).

    Google Scholar 

  28. Mindess, S., Nadeau, J. S., and Barrett, J. D., Effect of constant deformation rate on the strength perpendicular to the grain of Douglas-fir, Wood Science 8 (1976) 262–266.

    Google Scholar 

  29. Nadeau, J. S., Fracture Mechanics: An overview, Proc. First International Conference on Wood Fracture, August 1978, Banff, Alberta, Canada, pp. 175–186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Wittmann, F.H. (1985). Influence of Time on Crack Formation and Failure of Concrete. In: Shah, S.P. (eds) Application of Fracture Mechanics to Cementitious Composites. NATO ASI Series, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5121-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5121-1_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8764-3

  • Online ISBN: 978-94-009-5121-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics