Pseudo-Euclid on the Position of the Image in Reflection: Interpretations by an Anonymous Commentator, by Pena, and by Kepler

  • Richard Lorch
Part of the International Archives of the History of Ideas book series (ARCH, volume 110)


In theorem 16 of the pseudo-Euclidean treatise Catoptrica the position of the image of a point reflected in a plane mirror is found as the intersection of the ray between eye and mirror and the perpendicular from the object to the plane of the mirror.1 In Fig. 1, which is taken from pseudo-Euclid, with Roman letters replacing Greek, A is the object, B the eye, D the point of reflection, and E the image. E is found as the intersection of BD and the perpendicular AG. In theorems 17 and 18 the same is demonstrated for convex and concave spherical mirrors, the perpendicular being replaced by the line joining the object and the centre of the sphere. In the three theorems Pseudo-Euclid gives the standard ancient and medieval procedure to find the position of the image in catoptrics: Ptolemy,2 Alhazen,3 Grosseteste4 and Witelo5 all give this procedure. It is also to be found in Risner’s own work on optics6 as well as in his editions of Alhazen and Witelo. Decades after the publication of Kepler’s Paralipomena in Vitellionem(1604) the principle was discussed by Tacquet and Barrow.7 It even survived into the eighteenth century.8 In many of these authors the principle is discussed together with a similar principle for refraction, but only reflection will be considered here.


Plane Mirror Critical Word Spherical Mirror Latin Translation Concave Spherical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alhazen, Opricae Thesaurus. Alhazeni Arabis libri septem, nunc primum edit…a Federico Ranero, Basel, 1572, MDM 1927 B4.Google Scholar
  2. Buteo, Io. Buteonis annotationum liber in errares Campani, Zamberti, Oronrtii, Peletarii, lo. Penae interpretum Euclidis, attached to his De quadratura circuli libri duo, Venice, 1559, as pp. 207-283. MStB Math. P. 63.Google Scholar
  3. Caspar, Max. Kepler, 1571-1630, English translation by C. Doris Hellman, New York, 1959.Google Scholar
  4. Cohen. M.R. and Drabkin, I.E., A Source Book in Greek Science, Cambridge, Mass., 1958.Google Scholar
  5. Frisch. C.H. (ed.), loannis Kepleri Astronomi Opera Omnia, Frankfurt am Main, 1858–71.Google Scholar
  6. Gregory, Euchdis quae supersunt omnta ex recensione Davidis Gregory, Oxford, 1703.Google Scholar
  7. Heron, Herons von Alexandria Mechanik and Katoptrik, herausg. u. iibersetzt von L. Nix and W. Schmidt, Leipzig, 1900. Vol. 11, Fas. 1 of the Opera Omnia.Google Scholar
  8. Hooykaas, R., Humanume, science et riforme. Pierre de la Ramie (1515–1571). Leiden, 1958.Google Scholar
  9. Jocher, C.G., Allgemeines Gelehrien-Lexicon, Leipzig, 1750.Google Scholar
  10. Kepler, Johannes, Gesammelte Werke, herausg. von Max Caspar lu.a.l, Munich, 1938Lejeune, Albert, “Lee ’Postulate’ de la Catopirique dire d’Euclide”, Archives Internationales d’Huroire des Sciences, 1949, 7, pp. 598–613.Google Scholar
  11. Lindberg, David C., A Catalogue of Medieval and Renaissance Optical Nanuscriprs. in Subsidies Medievalia, IV, Toronto, 1975.Google Scholar
  12. Pena, Eucltdis Optica et Catoptrica e Gnieco versa per loannem Penam Regium Afathematicum, Paris, 1557. MDM 1927 A 183.Google Scholar
  13. Pseudo-Euclid, The Catoptrica in Euclidis Optica, Opticorum recensio Theonis, Catoptrica, cum scholiis antiquis, ed. I.L. Heiberg, Leipzig, 1895. Vol. VII of Opera Omnia.Google Scholar
  14. Ptolemy, L’oplique de Claude Piolemee daps la version brine d’apris Parabe de l’imir Eugene de Sicile. Edition critique et exegetique par Albert Lejeune, Louvain, 1956.Google Scholar
  15. Risner, Opticae libri quatuor ex voto Petri Rami novissimo per Fredericum Rsnerum etusdem in.Mathematicis adiutorem, Kassel, 1606. IASIB 4° Math. A 245. Google Scholar
  16. Thorndike, Lynn, A History of Mogic and Ecperimental Science, New York, 1923–56.Google Scholar
  17. Turbayne, Colin M., “Grosseteste and an Ancient Optical Principle”, Isis, 1959, 50, pp. 467–72.Google Scholar
  18. Ver Eecke, Euclide, l’Oplique et la Catoptrique, oeuvres traduites… avec une introduction et des notes par Paul Ver Eecke, Paris, 1959.Google Scholar
  19. Verdonk, 1.J., Petrus Ramus en de Wiskunde, Assen, 1966.Google Scholar
  20. Witelo:Smith, Albert Mark, “Witelo on the Principles of Reflection: a Critical Edition and English Translation, with Notes and Commentary:, Unpublished Ph.D. thesis, Wisconsin, 1956.Google Scholar
  21. Zamberti, MStB MS CLM 6, 16c.Google Scholar
  22. Zamberti, Euctidis Megarensis... Elementorum Geometricorum… cum expositione Theonis in priores X111 a Barrholomeo Veneto tatinitate domrta, Campani in omnes, et Hypsiclis Alexam drint in duos postremns... Phaenomena, Caropirtca el Oprica…. Basel, 1537. MStB 2° A. gr. b. 552. Ditto, 1546, 20 A. gr. 553. Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1985

Authors and Affiliations

  • Richard Lorch

There are no affiliations available

Personalised recommendations