Skip to main content

Blue-green algae (cyanobacteria): prospects and perspectives

  • Chapter
Biosalinity in Action: Bioproduction with Saline Water

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 17))

  • 504 Accesses

Summary

Photosynthetic, prokaryotic blue-green algae (cyanobacteria) occur in a wide range of natural habitats of diverse ionic composition and, as such, represent an important source of biological material for biosolar energy conversion programs using saline water. The gasvacuolate, filamentous Spirulina is grown in ‘seminatural’ culture in Lake Texcoco, Mexico, as a major source of single-cell protein for animal nutrition. Pilot-scale trials in other areas of the world have also demonstrated the suitability of blue-green algae, including Spirulina, for growth under brackish conditions. The carbohydrate accumulation profiles of blue-green algae differ in isolates from freshwater, marine and hypersaline habitats, with a trend towards sucrose or trehalose accumulation in stenohaline freshwater strains grown in media containing NaCl, while euryhaline and marine forms frequently accumulate glucosylglycerol. Many halotolerant isolates from hypersaline habitats accumulate glycinebetaine in response to osmotic stress. This knowledge may provide scope for future improvement in the N2 fixation rates of blue-green algae in saline media, using betaine-accumulating N2-fixing strains in preference to other, salt-sensitive isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson S and Dubinsky Z 1982 Mass production of algae. Experientia 38, 36–40.

    Article  CAS  Google Scholar 

  2. Baumann P and Baumann L 1981 The marine gram-negative eubacteria: genera Photo-bacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes In The Prokaryotes, Vol II. Eds. M P Starr, H Stolp, H G Triiper, A Balows and H G Schlegel. pp 1302–1331. Springer, Berlin.

    Google Scholar 

  3. Ben-Amotz A and Avron M 1983 Accumulation of metabolites by halotolerant algae and its industrial potential. Annu. Rev. Microbiol. 37, 95–119.

    Article  PubMed  CAS  Google Scholar 

  4. Blumwald E and Tel-Or E 1982 Osmoregulation and cell composition in salt adaptation of Nostoc muscorum. Arch. Microbiol. 132, 168–172.

    Article  CAS  Google Scholar 

  5. Blumwald E, Mehlhorn R J and Packer L 1983 Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques. Proc. Nat. Acad. Sci. USA 80, 2599–2602.

    Article  PubMed  CAS  Google Scholar 

  6. Blumwald E, Mehlhorn R J and Packer L 1983 Ionic osmoregulation during salt adaptation of the cyanobacterium Synechococcus 6311. Plant Physiol. 73, 377 — 380.

    Article  PubMed  CAS  Google Scholar 

  7. Borowitzka L J, Demmerle S, Mackay M A and Norton R S 1980 Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210, 650–651.

    Article  PubMed  CAS  Google Scholar 

  8. Bouillard L and Le Rudulier D 1983 Nitrogen fixation under osmotic stress: enhancement of nitrogenase biosynthesis in Klebsiella pneumoniae by glycinebetaine. Physiol. Veg. 21, 447–457.

    CAS  Google Scholar 

  9. Boyd C E 1973 Amino acid composition of freshwater algae. Arch Hydrobiol. 72, 1–9.

    Google Scholar 

  10. Braunegg G, Sonnleitner B and Lafferty R M 1978 A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appi. Microbiol. Biotechnol. 6, 29–37.

    Article  CAS  Google Scholar 

  11. Campbell J, Stevens S E and Balkwill D L 1982 Accumulation of poly-β-hydroxybutyrate in Spirulina platensis. J. Bacteriol. 149, 361–363.

    PubMed  CAS  Google Scholar 

  12. Carr N J 1966 The occurrence of poly-β-hydroxybuty rate in the blue-green alga Chlorogloea fritschii. Biochim. Biophys. Acta 120, 308–310.

    Article  PubMed  CAS  Google Scholar 

  13. Casu B, Naggi A and Vercelloti J R 1980 Polisaccaridi di riserva della Spirulina platensis, estrazione e caratterizzazione In Prospettive della coltura di Spirulina in Italia. Cons. Naz. delle Rich. Rome, pp 145–153.

    Google Scholar 

  14. Ciferri O 1983 Spirulina, the edible microorganism. Microbiol. Rev. 47, 551–578.

    PubMed  CAS  Google Scholar 

  15. Farrar WV 1966 Tecuitlatl: a glimpse of Aztec food technology. Nature London 211, 341–342.

    Article  Google Scholar 

  16. Galinski E A and Trüper H G 1982 Betaine, a compatible solute in the extremely halo-philic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol. Lett. 13, 357–360.

    CAS  Google Scholar 

  17. Jones K and Stewart WD P 1969 Nitrogen turnover in marine and brackish habitats. Ill the production of extracellular nitrogen by Calothrix scopulorum. J. Mar. Biol. Ass. UK 49, 701–716.

    Article  CAS  Google Scholar 

  18. Kollman V H, Hanners J L, London R E, Adame E G and Walker T E 1979 Photosynthetic preparation and characterization of 13C-labelled carbohydrates in Agmenellum quadrup-licatum. Carbohydr. Res. 73, 193–202.

    Article  CAS  Google Scholar 

  19. Leavitt R I 1983 Process for the preparation of L-proline by cultivating algae. US Patent No 4383038, US Patent Office.

    Google Scholar 

  20. Leonard J 1966 The 1964–65 Belgian trans-Saharan expedition. Nature 209, 126–128.

    Article  Google Scholar 

  21. Mackay M A, Norton R S and Borowitzka L J 1983 Marine blue-green algae have a unique osmoregulatory system. Mar. Biol. 73, 301–307.

    Article  CAS  Google Scholar 

  22. Mohammad F A A, Reed R H and Stewart W D P 1983 The halophilic cyanobacterium Synechocystis DUN52 and its osmotic responses. FEMS Microbiol. Lett. 16, 287–290.

    Article  CAS  Google Scholar 

  23. Reed R H and Stewart W D P 1983 Physiological responses of Rivularia atra to salinity: osmotic adjustment in hyposaline media. New Phytol. 95, 595–603.

    Article  CAS  Google Scholar 

  24. Reed R H, Chudek J A, Foster R and Stewart W D P 1984 Osmotic adjustment in cyano-bacteria from hypersaline environments. Arch. Microbiol. 138, 333–337.

    Article  CAS  Google Scholar 

  25. Reed R H, Richardson D L, Warr S R C and Stewart W D P 1984 Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130, 1–4.

    CAS  Google Scholar 

  26. Riccardi G, Sora S and Ciferri O 1981 Production of amino acids by analog-resistant mutants of the cyanobacterium Spirulina platensis. J. Bacteriol. 147, 1002–1007.

    PubMed  CAS  Google Scholar 

  27. Riccardi G, Cella R, Camerino G and Ciferri O 1983 Resistance to azetidine-2-carboxylic acid and sodium chloride tolerance in carrot cell cultures and Spirulina platensis. Plant Cell Physiol. 24, 1073–1078.

    CAS  Google Scholar 

  28. Richmond A and Vonshak A 1978 Spirulina culture in Israel. Arch. Hydrobiol. Beich. Ergebn. Limnol. 11, 274–280.

    Google Scholar 

  29. Richmond A, Karg S and Boussiba S 1982 Effects of bicarbonate and carbon dioxide on the competition between Chlorella vulgaris and Spirulla platensis. Plant Cell Physiol. 23, 1411–1417.

    CAS  Google Scholar 

  30. Rippka R, Deruelles J, Waterbury J B, Herdman M and Stanier R Y 1979 Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. Ill, 1–61.

    Google Scholar 

  31. Santillan C 1982 Mass production of Spirulina. Experientia 38, 40–43.

    Article  CAS  Google Scholar 

  32. Saxena P N, Ahmad M R, Shyam R and Misra P S 1982 Chemical composition of sewage-grown Spirulina platensis. Experientia 38, 1438.

    Article  CAS  Google Scholar 

  33. Stacey G, Van Baalen C and Tabita F R 1977 Isolation and characterization of a marine Anabaena sp. capable of rapid growth on molecular nitrogen. Arch. Microbiol. 114, 197–201.

    Article  CAS  Google Scholar 

  34. Stewart W D P 1980 Some aspects of structure and function in N2-fixing cyanobacteria. Annu. Rev. Microbiol. 34, 497–536.

    Article  PubMed  CAS  Google Scholar 

  35. Venkataraman L V 1983 Blue-green alga Spirulina. CFTRI Press, Mysore, India.

    Google Scholar 

  36. Vonshak A, Boussiba S, Abelovich A and Richmond A 1983 Production of Spirulina biomass: maintenance of monoalgal cultures outdoors. Biotechnol. Bioeng. 25, 341–349.

    Article  PubMed  CAS  Google Scholar 

  37. Warr SRC, Reed R H and Stewart W D P 1984 Physiological responses of Nodularia harveyana to osmotic stress. Mar. Biol. 79, 21–26.

    Article  Google Scholar 

  38. Wyn Jones R G and Gorham J 1983 Osmoregulation In Encyclopedia of Plant Physiology Vol 12C. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler. pp 35–58. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Reed, R.H., Warr, S.R.C., Richardson, D.L., Moore, D.J., Stewart, W.D.P. (1985). Blue-green algae (cyanobacteria): prospects and perspectives. In: Pasternak, D., San Pietro, A. (eds) Biosalinity in Action: Bioproduction with Saline Water. Developments in Plant and Soil Sciences, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5111-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5111-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8759-9

  • Online ISBN: 978-94-009-5111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics