Skip to main content

Carbohydrates in Relation to Soil Fertility

  • Chapter
Soil Organic Matter and Biological Activity

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 16))

Abstract

The carbohydrate in soil, which, on average, accounts for about ten per cent of the organic carbon content, forms one of the largest of the soil organic matter fractions, in so far as these may be defined. Most of the carbohydrate is in the form of polysaccharide, but small amounts of monosaccharides (free sugars) and oligosaccharides are also present21. It plays a vital role in soil fertility in three areas; biological nutrition, soil structure and soil water relationships. More specific functions involve plant root growth, adhesion in microorganisms, and the protection of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angyal S.J. 1980. Sugar-cation complexes — structure and applications. Chemical Society Reviews, 9, 415–427.

    Article  CAS  Google Scholar 

  2. Bacon J.S.D. 1967. The chemical environment of bacteria in soil. In The Ecology of Soil Bacteria, Ed. Gray T.R.G., Liverpool University Press, pp. 25–43.

    Google Scholar 

  3. Bacon J.S.D., Gordon A.H., Morris E.J. and Farmer V.C. 1975. Acetyl groups in cell wall preparations from higher plants. Biochemical Journal, 149, 485–487.

    CAS  Google Scholar 

  4. Baier R.E., Shafrin E.G. and Zisman W.G. 1968. Adhesion: mechanisms that assist or impede it. Science, 162, 1360–1368.

    Article  CAS  Google Scholar 

  5. Batistic L., Sarkar J.M. and Mayaudon J. 1980. Extraction, purification and properties of soil hydrolases. Soil Biology and Biochemistry, 12, 59–63.

    Article  CAS  Google Scholar 

  6. Benerzet H.J. and Matsumura F. 1974. Factors influencing the metabolism of mexacarbate by microorganisms. Journal of Agriculture and Food Chemistry, 22, 427–430.

    Article  Google Scholar 

  7. Berger K.C. and Pratt P.F. 1963. In: Fertilizer Technology and Use. Eds.McVickar M.H., Bridger L.B. and Nelson L.B. pp 288–292.

    Google Scholar 

  8. Berger K.C., and Truog E. 1945. Boron availability in relation to soil reaction and organic matter content. Soil Science Society of America Proceedings, 10, 113–116.

    Google Scholar 

  9. Berkeley R.C.W. 1979. Chitin, Chitosan and their degradative enzymes. Chapter 9 in: Microbial Polysaccharides and Polysaccharases. Eds. Berkeley R.C.W., Gooday G.W. and Ellwood D.C. Academic Press. pp.205–236.

    Google Scholar 

  10. Berkheiser V.E. 1981. Comparison of water adsorption by monovalent exchange ion forms of soil humic material and synthetic exchanges. Soil Science, 131, 172–177.

    Article  CAS  Google Scholar 

  11. Berrow M.L., Davidson M.S. and Burridge J.C. 1982. Trace elements extractable by 2-ketogluconic acid from soils and their relationship to plant contents. Plant and Soil, 66, 161–171.

    Article  CAS  Google Scholar 

  12. Bobbitt J.M. 1956. Periodate oxidation of carbohydrates. Advances in Carbohydrate Chemistry, 11, 1–41.

    CAS  Google Scholar 

  13. Bond R.D. and Harris J.R. 1964. The influence of the microflora on physical properties of soils. 1. Effects associated with filamentous algae and fungi. Australian Journal of Soil Research, 2, 111–122.

    Article  Google Scholar 

  14. Bouhours J.F. and Cheshire M.V. 1969. The occurrence of 2-0-methylxylose and 3-0-methylxylose in peat. Soil Biology and Biochemistry, 1, 185–190.

    Article  CAS  Google Scholar 

  15. Bremner J.M. 1957. Studies on soil humic acids II. Observations on the estimation of free amino groups. Reactions of humic acid and lignin preparations with nitrous acid. Journal of Agricultural Science, 48, 352–360.

    Article  Google Scholar 

  16. Bull A.T. 1980. Biodegradation: Some attitudes and strategies of microorganisms and microbiologists. In: Contemporary Microbial Ecology. Eds.Ellwood D.C., Hedger J.N., Latham M.J., Lynch J.M. and Slater J.H. Academic Press, pp. 107–136.

    Google Scholar 

  17. Burchill S., Hayes M.H.B. and Greenland D.J. 1981. Adsorption, Chapter 6 in: the Chemistry of Soil Processes. Eds. Greenland D.J. and Hayes M.H.B. John Wiley & Sons Ltd. pp.221–400.

    Google Scholar 

  18. Calcinai M. and Sequi P. 1977. Contribution of organic matter to cation-exchange capacity of soils. In: Soil Organic Matter Studies. IAEA Braunschweig, pp, 63–68.

    Google Scholar 

  19. Carballas T., Carballas M. and Jacquin F. 1978. Biodegradation et humification de la matiere organique des sols humiferes atlantiques. Anales de Edafologia y Agrobiologia, 37, 205–212.

    Google Scholar 

  20. Chen Y. and Schnitzer M. 1976. Water adsorption on soil humic substances. Canadian Journal of Soil Science, 56, 521–527.

    Article  CAS  Google Scholar 

  21. Cheshire M.V. 1979. Nature and origin of carbohydrates in soil. Academic press.

    Google Scholar 

  22. Cheshire M.V., Sparling G.P. and Mundie C.M. 1983. Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation. Journal of Soil Science, 34, 105–117.

    Article  CAS  Google Scholar 

  23. Cheshire M.V., Berrow M.L., Goodman B.A. and Mundie C.M. 1977. Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochimica Cosmochimica Acta, 41, 1131–1138.

    Article  CAS  Google Scholar 

  24. Cheshire M.V., Mundie C.M., Bracewell J.M., Robertson G.W., Russell J.D. and Fraser A.R. 1983. The extraction and characterization of soil polysaccharide by whole soil methylation. Journal of Soil Science, 34, 539–554.

    Article  CAS  Google Scholar 

  25. Clapp C.E. and Emerson W.W. 1965. The effect of periodate oxidation on the strength of soil crumbs I Qualitative studies. Soil Science Society of America Proceedings, 29, 127–130.

    Article  CAS  Google Scholar 

  26. Clapp C.E. and Emerson W.W. 1972. Reactions between Ca-montmorillonite and polysaccharides. Soil Science, 114, 210–216.

    Article  CAS  Google Scholar 

  27. Clapp C.E., Davis R.J. and Waugaman S.H. 1962. The effect of rhizobial polysaccharides on aggregate stability. Soil Science Society of America Proceedings, 26, 446–469.

    Article  Google Scholar 

  28. Clarke A.L., Greenland D.J. and Quirk J.P. 1967. Changes in some physical properties of the surface of an impoverished red-brown earth under pasture. Australian Journal of Soil Research, 5, 59–69.

    Article  Google Scholar 

  29. Coughlan K.J., Fox W.E. and Hughes J.D. 1973. A study of the mechanisms of aggregation in a krasnozem soil. Australian Journal of Soil Research, 11, 65–73.

    Article  Google Scholar 

  30. Currie J.A. 1966. The volume and porosity of soil crumbs. Journal of Soil Science, 17, 24–35.

    Article  Google Scholar 

  31. Curtin D. and Smillie G.W. 1978. Estimation of components of soil cation exchange capacity from measurements of specific surface and organic matter. Soil Science Society of America Proceedings, 40, 461–462.

    Article  Google Scholar 

  32. Davis H. 1978. Interactions between boric acid, borates and components of soil organic matter. PhD Thesis, University of Reading.

    Google Scholar 

  33. Davis H. and Mott C.J.B. 1981. Titrations of fulvic acid fractions I: Interactions influencing the dissociation/reprotonation equilibria. Journal of Soil Science, 32, 379–391.

    Article  CAS  Google Scholar 

  34. Davis H. and Mott C.J.B. 1981. Titrations of fulvic and fractions II: Chemical changes at higher pH. Journal of Soil Science, 32, 393–397.

    Article  CAS  Google Scholar 

  35. Drake E.H. and Motto H.L. 1982. An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils. Soil Science, 133, 281–288.

    Article  Google Scholar 

  36. Dudman W.F. 1977. The role of surface polysaccharides in natural environments. Chapter 9 In: Surface Carbohydrates of the Prokaryotic cell. Ed. Sutherland I.W., Academic Press, pp. 357–414.

    Google Scholar 

  37. Duff R.B. 1961. Occurrence of 2-0-methyl rhamnose and 4-0-methylgalactose in soil and peat. Journal of the Science of Food and Agriculture, 12, 826–831.

    Article  CAS  Google Scholar 

  38. Duff R.B. and Webley D.M. 1959. 2-ketogluconic acid as a natural chelator produced by soil bacteria. Chemistry and Industry, 1376–1377.

    Google Scholar 

  39. Duff R.B., Webley D.M. and Scott R.O. 1963. Solubilization of minerals and related materials by 2-ketogluconic acid-producing bacteria. Soil Science, 95, 105–114.

    Article  CAS  Google Scholar 

  40. Dunigan E.P. and McIntosh T.H. 1971. Atrazine-soil organic matter interactions. Weed Science, 19, 279–282.

    CAS  Google Scholar 

  41. Dyer J. 1954. Use of periodate oxidation in biochemical analysis. In Methods of Biochemical Analysis 3, Ed. Glick D. pp 111–152.

    Google Scholar 

  42. Edwards A.P. and Bremner J.M. 1965. Dispersion of mineral colloids in soils using cation exchange resins. Nature, 205, 208–209.

    Article  CAS  Google Scholar 

  43. Edwards A.P. and Bremner J.M. 1967. Microaggregates in soils. Journal of Soil Science, 18, 64–73.

    Article  CAS  Google Scholar 

  44. Emerson W.W. 1969. The structure of soil crumbs. Journal of Soil Science, 10, 235–244.

    Article  Google Scholar 

  45. Finch P., Hayes M.H.B. and Stacey M. 1967. Studies on soil polysaccharides and their interaction with clay preparations. Transactions of the International Society of Soil Science, Aberdeen, 19–32.

    Google Scholar 

  46. Forster S.M. 1979. Microbial aggregation of sand in an embryo dune system. Soil Biology and Biochemistry, 11, 537–543.

    Article  Google Scholar 

  47. Gillman G.P. 1979. A proposed method for the measurement of exchange properties of highly weathered soils. Australian Journal of Soil Research, 17, 129–139.

    Article  CAS  Google Scholar 

  48. Greenland D.J., Lindstrom G.R. and Quirk J.P. 1962. Organic materials which stabilize natural soil aggregates. Soil Science Society of America Proceedings, 26, 366–371.

    Article  CAS  Google Scholar 

  49. Griffith S.M. and Schnitzer M. 1975. Analytical characteristics of humic and fulvic acids extracted from tropical volcanic soils. Soil Science Society of America Proceedings, 39, 861–867.

    Article  CAS  Google Scholar 

  50. Guckert A., Breisch H. and Reisinger O. 1975. Interface sol-racine 1 Etude au microscope electronique des relations mucigel-argile-microorganisms. Soil Biology and Biochemistry, 7, 241–250.

    Article  Google Scholar 

  51. Guckert A., Tok H.H. and Jacquin F. 1977. Biodegradation de polysaccharides bacterians adsorbes sur une montmorillonite. In Soil Organic Matter Studies. Proceedings of the IAEA meeting. Volume 1, Vienna, pp 403–411.

    Google Scholar 

  52. Guckert A., Valla M. and Jacquin F. 1975. Adsorption of humic acids and soil polysaccharides on montmorillonite. Pochvovedenie, 2, 41–47.

    Google Scholar 

  53. Gupta U.C. 1968. Relationship of total and hotwater soluble boron, and fixation of added boron, to properties of podzol soils. Soil Science Society of America Proceedings, 32, 45–48.

    Article  CAS  Google Scholar 

  54. Haider K. and Domsch K.H. 1969. Decomposition and transformation of lignified plant material by microscopic fungi in soil. Archives of Microbiology, 64, 338–348.

    Article  CAS  Google Scholar 

  55. Hamzehi E. and Pflug W. 1981. Sorption and binding mechanism of polysaccharide cleaving soil enzymes by clay minerals. Zeitschrift für Pflanzenernahrung, Dungung und Bodenkunde, 144, 505–513.

    Article  CAS  Google Scholar 

  56. Harada T. and Tamai M. 1968. Factors affecting behaviour of boron in soil 1. Some soil properties affecting boron adsorption of soil. Soil Science and Plant Nutrition, 14, 215–224.

    CAS  Google Scholar 

  57. Harris R.F., Chesters G. and Allen O.N. 1966. Dynamics of soil aggregation. Advances in Agronomy, 18, 107–169.

    Article  CAS  Google Scholar 

  58. Hatcher J.T., Bower C.A. and Clark M. 1967. Adsorption of boron by soils as influenced by hydroxy aluminium and surface area. Soil Science, 104, 422–426.

    Article  CAS  Google Scholar 

  59. Haworth W.N., Pinkard F.W. and Stacey M. 1946. Function of bacterial polysaccharides in the soil. Nature, 158, 836–837.

    Article  CAS  Google Scholar 

  60. Hayes M.H.B. 1980. The role of natural and synthetic polymers in stabilizing soil aggregates. In: Microbial Adhesion to Surfaces. Eds. Berkeley R.C.W., Lynch J.M., Melling J., Rutter P.R. and Vincent B. Horwood, Chichester.

    Google Scholar 

  61. Helling C.S., Chesters G. and Coney R.B. 1964. Contribution of organic matter and clay to soil cation-exchange capacity as affected by the pH of the saturating solution. Soil Science Society of America Proceedings, 28, 517–520.

    Article  CAS  Google Scholar 

  62. Kampreth E.J. and Welch C.D. 1962. Retention and cation-exchange properties of organic matter in coastal plain soils. Soil Science Society of America Proceedings, 26, 263–265.

    Article  Google Scholar 

  63. Kirk T.K., Connors W.J. and Zeikus J.G. 1976. Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Applied and Environmental Microbiology, 32, 192–194.

    CAS  Google Scholar 

  64. Lasik Y. and Gordiyenko S.A. 1977. (Complexing of soil bacteria polysaccharides With metals). Soviet Soil Science translated from Pochvovedenie, 1977, 92–98.

    Google Scholar 

  65. Lasik Y., Gordiyenko S.A. and Kalakhova L. 1978. (Decomposition of bacterial polysaccharides in soil). Soviet Soil Science translated from Pochvovedenie, 1978, 151–153.

    Google Scholar 

  66. Linehan D.J. 1977. A comparison of the polycarboxylic acids extracted by water from an agricultural top soil with those extracted by alkali. Journal of Soil Science, 28, 369–378.

    Article  CAS  Google Scholar 

  67. Linser H.A. 1956. See Scheffer and Ulrich, 1960.

    Google Scholar 

  68. Louw H.A. and Webley D.M. 1959. A study of soil bacteria dissolving certain mineral phosphate fertilizers and related compounds. Journal of Applied Bacteriology, 22, 227–233.

    Article  CAS  Google Scholar 

  69. Lowe L.E. 1965. Sulphur fractions of selected Alberta soil profiles of the chernozemic and podzolic orders. Canadian Journal of Soil Science, 45, 297–303.

    Article  CAS  Google Scholar 

  70. Lowe L.E. 1968. Soluble polysaccharide fractions in selected Alberta soils. Canadian Journal of Soil Science, 48, 215–217.

    Article  CAS  Google Scholar 

  71. Mertel Y.A., De Kimpe C.R. and Laverdiere M.R. 1976. Cation exchange capacity of clay rich soils in relation to organic matter, mineral composition and surface area. Soil Science Society of America Proceedings, 42, 764–767.

    Article  Google Scholar 

  72. Martin J.P. 1971. Decomposition and binding action of polysaccharides in soil. Soil Biology and Biochemistry, 3, 33–41.

    Article  CAS  Google Scholar 

  73. Martin J.P. 1982. Biodegradation, incorporation into biomass and stabilization in humus of polysaccharide carbons in soil. Abstract V-15 XIth International Carbohydrate Symposium, Vancouver.

    Google Scholar 

  74. Martin J.P., Ervin J.O. and Richards S.J. 1972. Decomposition and binding action in soil of some mannose-containing microbial polysaccharides and their Fe Al Zn and Cu complexes. Soil Science, 113, 322–327.

    Article  CAS  Google Scholar 

  75. Martin J.P., Ervin J.O. and Shepherd R.A. 1966. Decomposition of the iron, aluminium, zinc and copper salts or complexes of some microbial and plant polysaccharides in soil. Soil Science Society of America Proceedings, 30, 196–200.

    Article  CAS  Google Scholar 

  76. Marshall K.C. 1968. Interaction between colloidal montmorillonite and cells of rhizobium species with different ionogenic surfaces. Biochimica Biophysica Acta, 156, 179–186.

    Article  CAS  Google Scholar 

  77. McClure G.W. 1970. Accelerated degradation of herbicides in soil by the application of microbial nutrient broths. Contributions from Boyce Thompson Institute, 24, 235–244.

    CAS  Google Scholar 

  78. Mehta N.C., Streuli H., Muller M. and Deuel H. 1960. Role of polysaccharides in soil aggregation. Journal of the Science of Food and Agriculture, 11, 40–47.

    Article  CAS  Google Scholar 

  79. Moavad H., Gusev V.S., Babyeva I.P. and Zuyaginstev D.G. 1974. (Adsorption of extracellular polysaccharide of the yeast Lipomyces lipofer on Kaolinite). Soviet Soil Science translated from Pochvovedenie, 11, 79–84.

    Google Scholar 

  80. Moghimi A. and Tate M.E. 1978. Does 2-ketogluconic acid chelate calcium in the pH range 2.4 to 6.4? Soil Biology and Biochemistry, 10, 289–292.

    Article  CAS  Google Scholar 

  81. Moghimi A., Tate M.E. and Oades J.M. 1978. Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biology and Biochemistry, 10, 283–287.

    Article  CAS  Google Scholar 

  82. Mortvedt J.J. and Cunningham H.G. 1971. In: Fertilizer Technology and Use, 2nd Edition Eds. Olson R.A., Army T.J., Hanway J.J. and Kilmer V.J. pp. 426–427.

    Google Scholar 

  83. Murayama S. 1982. The monosaccharide composition of polysaccharides in ando soils. Journal of Soil Science, 31, 481–490.

    Article  Google Scholar 

  84. Novakova J. 1977. Effect of bentonite on the substrate stabilization. In:Soil Biology and Conservation of the Biosphere. Proceedings of the VIIth meeting of the Soil Biology Section of the Society for Soil Science of the Hungarian Association of Agricultural Sciences held at Keszthely University of Agriculture, 1975. Ed. Szegi. pp.271–275.

    Google Scholar 

  85. Oades J.M. 1978. Mucilages at the root surface. Journal of Soil Science, 29, 1–16.

    Article  CAS  Google Scholar 

  86. Ogner G. 1980. Analysis of the carbohydrates of fulvic and humic acids as their partially methylated alditol acetates. Geoderma, 23, 1–10.

    Article  CAS  Google Scholar 

  87. Pagliai M., Guido G. and Petruzzelli G. 1978. Effect of molecular weight on dextran — soil interactions. Chapter 21 in: Modification of Soil Structure. Eds. Emerson W.W., Bond R.D. and Dexter A.R. John Wiley and Sons Ltd. pp. 175–180.

    Google Scholar 

  88. Painter T. and Larsen B. 1970. Formation of hemiacetals between neighbouring hexuronic acid residues during the periodate oxidation of alginate. Acta Chemica Scandinavica, 24, 813–833.

    Article  CAS  Google Scholar 

  89. Painter T. and Larsen B. 1970. Transient hemiacetal structures formed during the periodate oxidation of xylan. Acta Chemica Scandinavica, 24, 2366–2378.

    Article  CAS  Google Scholar 

  90. Painter T. and Larsen B. 1973. A fürther illustration of nearest-neighbour auto-inhibitory effects in the oxidation of alginate by periodate ion. Acta Chemica Scandinavica, 27, 1957–1962.

    Article  CAS  Google Scholar 

  91. Parfitt R.L. 1978. Anion adsorption by soils and soil materials. Advances in Agronomy, 30, 1–50.

    Article  CAS  Google Scholar 

  92. Parfitt R.L. and Greenland D.J. 1970. Adsorption of polysaccharides by montmorillonite. Soil Science of America Proceedings, 34, 862–865.

    Article  CAS  Google Scholar 

  93. Parks W.L. and White J.L. 1952. Boron retention by clay and humus systems saturated with calcium. Soil Science Society of America Proceedings, 16, 298–300.

    Article  CAS  Google Scholar 

  94. Parsons J.W. 1981. Chemistry and distribution of amino sugars in soils and soil organisms. Chapter 5 in: Soil Biochemistry, 5, Eds Paul E.A. and Ladd J.N. pp 197–227.

    Google Scholar 

  95. Pflug W. 1982. Effect of clay minerals on the activity of polysaccharide cleaving soil enzymes. Zeitschrift für Pflanzenahrung und Bodenkunde, 145, 493–502.

    Article  CAS  Google Scholar 

  96. Reese E.T. 1968. Microbial transformation of soil polysaccharides. In: Organic Matter and Soil Fertility. Pontificiae Academiae Scientiarum Scripta Varia, 32, 535–577.

    Google Scholar 

  97. Reeve M.J., Smith P.D. and Thomasson A.J. 1973. The effect of density on water retention properties of field soils. Journal of Soil Science, 24, 355–367.

    Article  Google Scholar 

  98. Reid J.B., Goss M.J. and Robertson P.D. 1982. Relationship between the decrease in soil stability effected by the growth of maize roots and changes in organically bound iron and aluminium. Journal of Soil Science, 33, 397–410.

    Article  CAS  Google Scholar 

  99. Rogers H.J. 1979. Adhesion of microorganisms to surfaces: some general considerations of the role of the envelope. In: Adhesion of Microorganisms to surfaces. Eds. Ellwood D.C., Melling J. and Rutter P. Special publication of the Society for General Microbiology, No. 2, pp.29–55.

    Google Scholar 

  100. Rovira A.D. and Greacen E.L. 1957. The effect of aggregate disruption on the activity of microorganisms in the soil. Australian Journal of Agricultural Research, 8, 659–673.

    Article  Google Scholar 

  101. Saini G.R. 1966. Organic matter as a measure of bulk density of Soil. Nature (London), 210, 1295–1296.

    Article  Google Scholar 

  102. Sarkar J.M., Batistic L. and Mayaudon J. 1980. Les hydrolases du sol et leur association avec les hydrates de carbone. Soil Biology and Biochemistry, 12, 325–328.

    Article  CAS  Google Scholar 

  103. Satanarayana T. and Getzin L.W. 1973. Properties of a stable cell-free esterase from soil. Biochemistry, 12, 1566–1572.

    Article  Google Scholar 

  104. Scheffer F. and Ulrich B. 1960. Humus and Humusdungung. Verlag.

    Google Scholar 

  105. Sparling G.P., Ord B.G. and Vaughan D. 1981. Changes in microbial biomass and activity in soils amended with phenolic acids. Soil Biology and Biochemistry, 13, 99–104.

    Article  CAS  Google Scholar 

  106. St Arnaud R.J. and Sephton G.A. 1972. Contribution of clay and organic matter to cation-exchange capacity of Chernozem soils. Canadian Journal of Soil Science, 52, 124–126.

    Article  CAS  Google Scholar 

  107. Stefanson R.C. 1971. Effect of periodate and pyrophosphate on the seasonal changes in aggregate stabilization. Australian Journal of Soil Research, 9, 33–41.

    Article  CAS  Google Scholar 

  108. Stevenson F.J. 1966. Lipids in soil. American Oil Chemists’ Society, 43, 203–210.

    Article  CAS  Google Scholar 

  109. Stevenson F.J. 1971. Organic matter reactions involving herbicides in soil. Journal of Environmental Quality, 1, 333–343.

    Article  Google Scholar 

  110. Stotzky G. 1972. Activity, ecology and population dynamics of microorganisms in soil. Critical Reviews in Microbiology. Volume 2, CRC Press, The Chemical Rubber Co., Cleveland, Ohio, pp 59–127.

    Google Scholar 

  111. Sutherland I.W. 1979. Polysaccharides in the adhesion of marine and fresh water bacteria. Chapter 18 in: Microbial Adhesion to Surfaces, Eds. Berkley R.C.W., Lynch J.M., Melling J., Ruther P.R. and Vincent B. Horwood, Chichester, pp.329–338.

    Google Scholar 

  112. Thomasson A.J. 1978. Towards an objective classification of soil structure. Journal of Soil Science, 29, 38–46.

    Article  Google Scholar 

  113. Tisdall J.M. and Oades J.M. 1979. Stabilization of soil aggregates by the root system of Ryegrass. Australian Journal of Soil Research, 17, 429–441.

    Article  Google Scholar 

  114. Tisdall J.M. and Oades J.M. 1980. The effect of crop rotation on aggregation in a red-brown earth. Australian Journal of Soil Research, 18, 423–433.

    Article  CAS  Google Scholar 

  115. Tisdall J.M. and Oades J.M. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141–163.

    Article  CAS  Google Scholar 

  116. Vaughan D. and Ord B. 1980. An effect of soil organic matter on invertase activity in soil. Soil Biology and Biochemistry, 12, 449–450.

    Article  CAS  Google Scholar 

  117. Whistler R.L. 1973. Factor influencing gum costs and applications. Chapter 1 in: Industrial Gums Polysaccharides and Their Derivatives. Academic Press, pp. 5–18.

    Google Scholar 

  118. Wright W.R. and Foss J.E. 1972. Contributions of clay and organic matter to the cation exchange capacity of Maryland soils. Soil Science Society of America Proceedings, 36, 115–118.

    Article  CAS  Google Scholar 

  119. Yoshida M. and Kumada K. 1979. Studies on the properties of organic matter in buried humic horizon derived from volcanic ash III. Sugars in hydrolysates of buried humic horizon. Soil Science and Plant Nutrition, 25, 209–216.

    CAS  Google Scholar 

  120. Yoshida M. and Kumada K. 1979. Studies on the properties of organic matter in buried humic horizon derived from volcanic ash IV. Characteristics of polysaccharides in hydrolysates of fulvic acid and in ethanol precipitates from fulvic acid in buried humic horizon. Soil Science and Plant Nutrition, 25, 217–224.

    CAS  Google Scholar 

  121. Yuan T.L., Gammon N. and Leighty R.G. 1967. Relative contribution of organic matter and clay fractions to cation exchange capacity of sandy soils from several soil groups. Soil Science, 104, 123–128.

    Article  CAS  Google Scholar 

  122. Zunino H., Borie F., Aguilera S., Martin J.P. and Haider K. 1982. Decomposition of C labelled glucose, plant and microbial products and phenols in volcanic ash-derived soils in Chile. Soil Biology and Biochemistry, 14, 37–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Cheshire, M.V. (1985). Carbohydrates in Relation to Soil Fertility. In: Vaughan, D., Malcolm, R.E. (eds) Soil Organic Matter and Biological Activity. Developments in Plant and Soil Sciences, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5105-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5105-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8757-5

  • Online ISBN: 978-94-009-5105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics