Skip to main content

Origin, Nature and Biological Activity of Aliphatic Substances and Growth Hormones Found in Soil

  • Chapter
Soil Organic Matter and Biological Activity

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 16))

Abstract

Considering the diversity of soil organisms and their range of metabolic activities, there is potential for a vast range of products to be formed in soil. These may affect the growth of plants directly and indirectly by modifying the soil environment or the balance of other organisms, such as pathogens, present in the soil. In an earlier review50, I catalogued some of the products and outlined some of the conditions which must be satisfied to be confident that substances extracted from the soil have ecological significance. However, many studies still do not consider this and therefore it seems prudent to reiterate those conditions here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles F.B. 1973. Ethylene in Plant Biology. Academic Press, New York.

    Google Scholar 

  2. Dams L.O. and Yang S.F. 1979. Ethylene biosynthesis: Identification of l-aminocylopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences USA, 76, 170–174.

    Google Scholar 

  3. Allam A.I. and Hollis J.P. 1972. Sulfide inhibition of oxidases in rice roots. Phytopathology, 62, 634–639.

    Article  CAS  Google Scholar 

  4. Allam A.I., Pitts G. and Hollis J.P. 1972. Sulfide determination in submerged soils with an ion-selective electrode. Soil Science, 114 456–467.

    Article  CAS  Google Scholar 

  5. Andel O.M. van and Fuchs A. 1972. Interference with plant growth regulation by microbial metabolites. In: Phytotoxins in Plant Disease. Eds. R.K.S. Wood, A. Ballio and A. Graniti, pp. 227–249. Academic Press, London.

    Google Scholar 

  6. Anderson J.P.E. and Domsch K.H. 1973. Quantification of bacterial and fungal contributions to soil respiration. Archives for Microbiology, 93, 113–127.

    Article  CAS  Google Scholar 

  7. Austin D.J., Bu’Lock J.D. and Gooday G.W. 1969. Trisporic acids: sexual hormones from Mucor mucedo and Blakesiea trispora. Nature, London, 223, 1178–1179.

    Article  CAS  Google Scholar 

  8. Barea J.M. and Brow M.E. 1974. Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. Journal of Applied Bacteriology, 37, 583–593.

    Article  CAS  Google Scholar 

  9. Barea J.M., Navarro E. and Montoya E. 1976. Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. Journal of Applied Bacteriology, 40, 129–134.

    Article  CAS  Google Scholar 

  10. Beletskaya E.K. 1977. Changes in metabolism of winter crops during their adaptation to flooding. Soviet Plant Physiology, 24, 750–756.

    Google Scholar 

  11. Brian P.W. 1957. The ecological significance of antibiotic production. In: Microbial Ecology. Eds. R.E.C. Williams and C.C. Spicer, pp. 168–188. Cambridge University Press, Cambridge.

    Google Scholar 

  12. Brown M.E. 1972. Plant growth substances produced by micro-organisms of soil and rhizosphere. Journal of Applied Bacteriology, 35, 443–451.

    Article  CAS  Google Scholar 

  13. Brown M.E., Jackson, R.M. and Burlingham S.K. (1968). Effects produced on tomato plants, Lycopersicum esculentum, but seed or root treatment with gibberellic acid and indol-3yl-acetic acid. Journal of Experimental Botany, 19, 544–552.

    Article  CAS  Google Scholar 

  14. Cannell R.Q. and Lynch J.M. 1983. Possible adverse effects of decomposing organic matter on plant growth. In: Organic Matter and Rice. Ed. F.N. Ponnamperuma, in press. International Rice Research Institute, Los Banos.

    Google Scholar 

  15. Chalutz E., Lieberman M. and Sisler H.D. 1977. Methionine-induced ethylene production by Penicillium digitatum. Plant Physiology, 60, 402–406.

    Article  CAS  Google Scholar 

  16. Chalutz E. and Lieberman M. 1978. Inhibition of ethylene production in Penicillium digitatum. Plant Physiology, 61, 111–114.

    Article  CAS  Google Scholar 

  17. Cho D.Y. and Ponnamperuma F.N. 1971. Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice. Soil Science, 112, 184–194.

    Article  CAS  Google Scholar 

  18. Considine P.J. and Patching J.W. 1975. Ethylene production by microorganisms grown on phenolic acids. Annals of Applied Biology, 81, 115–119.

    Article  CAS  Google Scholar 

  19. Cornforth I.S. 1975. The persistence of ethylene in aerobic soils. Plant and Soil, 42, 85–96.

    Article  CAS  Google Scholar 

  20. Curtis R.W. 1957. Survey of fungi and actinomycetes for compounds possessing gibberellin-like activity. Science, 125, 646.

    Article  CAS  Google Scholar 

  21. Lasilva E.J., Henriksson E. and Henriksson L.A. 1974. Ethylene production by fungi. Plant Science Letters, 2, 63–66.

    Article  Google Scholar 

  22. Drew M.C., Jackson M.B. and Gipfard S. 1979. Ethylene-promoted adventitious rooting and development of cortical air spaces (arenchyma) in roots may be adpative responses to flooding in Zea mays L. Planta, 147, 83–88.

    Article  CAS  Google Scholar 

  23. Drew M.C. and Lynch J.M. 1980. Soil anaerobiosis, microorganisms and root function. Annual Reviews of Phytopathology, 18, 37–66.

    Article  CAS  Google Scholar 

  24. Dommergues Y. and Jacq V. 1972. Microbiological transformations of sulphu: in the rhizosphere and spermosphere. Annales Agronomiques, 23, 201–215.

    Google Scholar 

  25. El-Beltagy A.S. and Hall M.A. 1974. Effect of water stress upon endogenous ethylene levels in Vicia faba. New Phytologist, 73, 47–60.

    Article  CAS  Google Scholar 

  26. Feofilova E.P., Lozhnikova V.N., Bekhtereva M.N., Samokhvalov G.I. and Chailakhain M.Kh. 1973. The influence of trisporic acids on the growth and pigment formation and respiration of pea sprouts. Doklady Academii Nauk SSSR, 208, 483–486.

    CAS  Google Scholar 

  27. Ford H.W. 1973. Levels of hydrogen sulphide toxic to citrus roots. Journal of the American Society of Horticultural Science, 98, 66–68.

    CAS  Google Scholar 

  28. Gambrell R.P. and Patrick W.H. 1978. Chemical and microbiological properties of anaerobic soils and sediments. In: Plant Life in Anaerobic Environments. Eds. D.D. Hook and R.M.M. Crawford, pp. 375–423. Ann Arbor, Michigan.

    Google Scholar 

  29. Garcia J.L., Raimbault M., Jacq V., Rinaudo, G. and Roger P. 1974. Activities microbiennes dans les sols de rizieres du Senegal: Relation avec les characteristiques physico-chemiques et influence de la rhizosphere. Révue Ecologie et Biologie du Sol, 11, 169–185.

    CAS  Google Scholar 

  30. Gaskins M.H. and Hubbell D.H. 1979. Response of non-leguminous plants to root inoculation with free-living diazotrophic bacteria. In: The Soil-Root Interface. Ed. J.L. Harley and R.S. Russell, pp. 176–182. Academic Press, London.

    Google Scholar 

  31. Goodlass G. and Smith K.A. 1978. Effects of organic amendments on the evolution of ethylene and other hydrocarbons from soil. Soil Biology and Biochemistry, 10, 201–205.

    Article  CAS  Google Scholar 

  32. Goodlass G. and Smith K.A. 1979. Effects of ethylene on root extension anc nodulation of peat (Pisum sativum L.) and white clover (Trifolium repens L.). Plant and Soil, 51, 387–395.

    Article  CAS  Google Scholar 

  33. Green M.S. and Etherington J.R. 1977. Oxidation of ferrous iron by rice (Oryza sativa L.) roots: A mechanism for waterlogging tolerance? Journal of Experimental Botany, 28, 678–690.

    Article  CAS  Google Scholar 

  34. Grobelaar N., Clarke B., Hough M.C. 1971. The nodulation and nitrogen fixation of isolated roots of Phaseplus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant and Soil Special Volume, pp. 215–221.

    Google Scholar 

  35. Gruen H.E. 1959. Auxins and fungi. Annual Review of Plant Physiology, 10, 405–440.

    Article  CAS  Google Scholar 

  36. Gussin E.J. and Lynch J.M. 1981. Microbial fermentation of grass residues to organic acids as a factor in the establishment of new grass swards. New Phytologist, 89, 449–457.

    Article  CAS  Google Scholar 

  37. Gussin E.J. and Lynch J.M. 1982. Effect of local concentrations of acetic acid around barley roots on seedling growth. New Phytologist, 92, 345–548

    Article  CAS  Google Scholar 

  38. Hammence J.H. 1946. The determination of auxins in soils. Analyst, London, 71, 111–116.

    Article  Google Scholar 

  39. Hill P. 1972. The production of penicillins in soils and seeds by Penicillium chrysogenum and the role of penicillin β-lactamase in the ecology of soil bacillus. Journal of General Microbiology, 70, 243–252.

    CAS  Google Scholar 

  40. Hollis J.P., Allam A.I., Pitts G., Joshi M.M. and Irrahim I.K.A. 1975. Sulfide diseases of a rice on iron-excess soils. Acta Phytopathologlca Academiae Scientarium Hungaricae, 10, 329–341.

    CAS  Google Scholar 

  41. Hollis J.P., Rodrigues-Kabana R. 1967. Fatty acids in Louisiana rice fields. Phytopathology, 57, 841–847.

    CAS  Google Scholar 

  42. Howell C.R. and Stipanovic R.D. 1979. Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology, 69, 480–482.

    Article  CAS  Google Scholar 

  43. Jackson M.B., Gales K. and Campbell L.J. 1978. Effect of waterlogged soil conditions on the production of ethylene and on water relationships in tomato plants. Journal of Experimental Botany, 29, 183–193.

    Article  CAS  Google Scholar 

  44. Joshi M.M. and Hollis J.P. 1977. Interactions of Beggiatoa and rice plant: detoxification of hydrogen sulphide in the rice rhizosphere. Science, 195, 179–180.

    Article  CAS  Google Scholar 

  45. Judd Ringer Corporation. 1980. Improvements in or relating to the improvement of growing media for plants. British Patent 1562556.

    Google Scholar 

  46. Kepporl N.P., Brockwell J. and Zwar J.A. 1960. The symbiotic synthesis of auxin by legumes and nodule bacteria and its role in nodule development. Australian Journal of Biological Sciences, 13, 456–467.

    Google Scholar 

  47. Le Gall J., and Postgate J.R. 1973. The physiology of sulphate-reducing bacteria. Advances in Microbial Physiology, 10, 81–133.

    Article  Google Scholar 

  48. Lee R.B. 1977. Effects of organic acids on the loss of ions from barley roots. Journal of Experimental Botany, 28, 578–587.

    Article  CAS  Google Scholar 

  49. Lynch J.M. 1972. Identification of substrates and isolation of microorganisms responsible for ethylene production in the soil. Nature, London, 240, 45–46.

    Article  CAS  Google Scholar 

  50. Lynch J.M. 1976. Products of soil micro-organisms in relation to plant growth. CRC Critical Reviews in Microbiology, 5, 67–107.

    Article  CAS  Google Scholar 

  51. Lynch J.M. 1978. Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues. Soil Biology and Biochemistry, 10, 131–135.

    Article  CAS  Google Scholar 

  52. Lynch J.M. 1980. Effects of organic acids on the germination of seeds and growth of seedlings. Plant, Cell and Environment, 3, 255–259.

    CAS  Google Scholar 

  53. Lynch J.M. 1983. Effects of antibiotics on ethylene production by soil micro-organisms. Plant and Soil, 70, 415–420.

    Article  CAS  Google Scholar 

  54. Lynch J.M. 1983. Soil Biotechnology. Microbiological Factors in Crop Productivity. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  55. Lynch J.M. 1983. Plant growth regulators. CRC Handbook of Microbiology Vol. VII, in press. CRC Press, Boca Raton.

    Google Scholar 

  56. Lynch J.M. and Gum K.B. 1978. The use of the chemostat to study the decomposition of wheat straw in soil slurries. Journal of Soil Science, 29, 551–556.

    Article  CAS  Google Scholar 

  57. Lynch J.M., Gunn K.B. and Panting L.M. 1980. On the concentration of acetic acid in straw and soil. Plant and Soil, 56, 93–98.

    Article  CAS  Google Scholar 

  58. Lynch J.M. and Harper S.H.T. 1974. Formation of ethylene by a soil fungus. Journal of General Microbiology, 80, 187–195.

    Google Scholar 

  59. Lynch J.M. and Harper S.H.T. 1974. Fungal growth rate and the formation of ethylene in soil. Journal of General Microbiology, 85, 91–96.

    CAS  Google Scholar 

  60. Lynch J.M. and Harper S.H.T. 1980. Role of substrates and anoxia in the accumulation of soil ethylene. Soil Biology and Biochemistry, 12, 363–367.

    Article  CAS  Google Scholar 

  61. Lynch J.M. and White N. 1977. Effects of some non-pathogenic microorganisms on the growth of gnotobiotic barley plants. Plant and Soil, 47, 161–172.

    Article  CAS  Google Scholar 

  62. Norstadt F.A. and McCalla T.M. 1963. Phytotoxic substance from a species of Penicillium. Science, 140, 410–411.

    Article  CAS  Google Scholar 

  63. Norstadt F.A. and McCalla T.M. 1971. Effects of patulin on wheat grown to maturity. Soil Science, 111, 236–243.

    Article  CAS  Google Scholar 

  64. Paul E.A., Campbell C.A., Rennie L.A. and McCallum K.J. 1964. Investigations of the dynamics of soil utlizing carbon dating techniques. Transactions 8th International Congress of Soil Science, 3, 201–208.

    CAS  Google Scholar 

  65. Pažout J., Pažoutová S. and Vancura V. 1982. Effects of light, phosphate and oxygen on ethylene formation and conidiation in surface cultures of Penicillium cyclopium Westling. Current Microbiology, 7, 133–136.

    Article  Google Scholar 

  66. Perrin R.M.S., Willis E.H. and Holge C.A.H. 1964. Dating of humus podzols by residual radicarbon activity. Nature, London, 202, 165–166.

    Article  Google Scholar 

  67. Primrose S.B. 1976. Formation of ethylene by Escherichia coli. Journal of General Microbiology, 95, 159–165.

    CAS  Google Scholar 

  68. Primrose S.B. 1979. Ethylene and agriculture: The role of the microbe. Journal of Applied Bacteriology, 46, 1–25.

    Article  CAS  Google Scholar 

  69. Primrose S.B. and Dilworth M.J. 1976. Ethylene production by bacteria. Journal of General Microbiology, 93, 177–181.

    CAS  Google Scholar 

  70. Reynders L. and Vlassak K. 1979. Conversion of trytophan to indole acetic acid by Azospirillum brasilense. Soil Biology and Biochemistry, 11, 547–548.

    Article  CAS  Google Scholar 

  71. Rice E.L. 1974. Allelopathy. Academic Press, London.

    Google Scholar 

  72. Rigaud J. and Puppo A. 1975. Indole-3-acetic acid catabolism by soybean bacteroids. Journal of General Microbiology 88, 223–228.

    Google Scholar 

  73. Rovira A.D. and Vendrell M. 1972. Ethylene in sterilized soil: its significance in studies of interactions between microorganisms and plants. Soil Biology and Biochemistry, 4, 63–69.

    Article  CAS  Google Scholar 

  74. Sanderson P.L. and Armstrong W. 1978. Soil waterlogging, root rot and conifer windthrow: Oxygen deficiency or phytotoxicity? Plant and Soil, 49, 185–190.

    Article  CAS  Google Scholar 

  75. Sarma K.S.B., Lakshmi-Kumari M., Apte R. and Subba Rao N.S. 1973. Some physiological characteristics of Rhizobium meliloti and R. trifolii in relation to efficiency of symbiosis with lucerne and Egyptian clover. Plant and Soil, 38, 299–305.

    Article  CAS  Google Scholar 

  76. Siegel S.M. and Halpern L.A, 1964. The effect of branching at C-1 on the biological activity of alcohols. Proceedings of the National Academy of Sciences USA, 51, 765–768.

    CAS  Google Scholar 

  77. Slankis V. 1973. Hormonal relationships in mycorrhizal development. In: Ectomycorrhizae — Their Ecology and Physiology. Eds. G.C. Marks and T.T. Kozolowski, pp. 231–298. Academic Press, New York.

    Google Scholar 

  78. Smith A.M. and Cook R.J. 1974. Implications of ethylene production for biological balance of soil. Nature, London, 252, 703–705.

    Article  CAS  Google Scholar 

  79. Smith K.A. and Dowdell R.J. 1974. Field studies of the soil atmosphere. 1, Relationships between ethylene, oxygen, soil moisture content and temperature. Journal of Soil Science, 25, 217–230.

    Article  CAS  Google Scholar 

  80. Smith K.A. and Restall S.W.F. 1971. The occurrence of ethylene in anaerobic soil. Journal of Soil Science, 22, 450–443.

    Article  Google Scholar 

  81. Smith K.A. and Russell R.S. 1969. Occurrence of ethylene and its significance in anaerobic soil. Nature, London, 222, 469–471.

    Article  Google Scholar 

  82. Spalla C. and Biffi G. 1971. Abscisic acid-like activity of trisporic acids. Experienta, 27, 1387–1388.

    Article  CAS  Google Scholar 

  83. Sutherland J.B. and Cook R.J. 1980. Effects of chemical and heat treatments on ethylene production in soil. Soil Biology and Biochemistry, 12, 357–362.

    Article  CAS  Google Scholar 

  84. Swanson B.T., Wilkins H.F. and Kennedy B. 1979. Factors affecting ethylene production by some plant pathogenic bacteria. Plant and Soil, 51, 19–26.

    Article  CAS  Google Scholar 

  85. Thomas K.C and Spencer M. 1977. L-methionine as an ethylene precursor in Saccharomyces cerevisiae. Canadian Journal of Microbiology, 23, 1669–1674.

    Article  CAS  Google Scholar 

  86. Wainwright M. and Pugh G.J.P. 1975. Phenol auxins and Ehrlich reactors in soils. Soil Biology and Biochemistry, 7, 287–289.

    Article  CAS  Google Scholar 

  87. Waksman S.A. 1956. The role of antibiotics in natural processes. Giornale di Microbiologica, 2, 1–14.

    Google Scholar 

  88. Wang T.S.C and Chuang T.-T. 1967. Soil alcohols their dynamics and effect on plant growth. Soil Science, 104, 40–45.

    Article  CAS  Google Scholar 

  89. Williams S.T. 1982. Are antibiotics produced in soil? Pedobiologia, 23, 427–455.

    CAS  Google Scholar 

  90. Wright J.M. 1951. Phytotoxic effects of some antibiotics. Annals of Botany (London), 15, 495–499.

    Google Scholar 

  91. Wu M.M.H, Wu C.S., Chiang M.H. and Chou S.F. 1972. Microbial investigations on the suffocation disease of rice in Taiwan. Plant and Soil, 37, 329–544.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Lynch, J.M. (1985). Origin, Nature and Biological Activity of Aliphatic Substances and Growth Hormones Found in Soil. In: Vaughan, D., Malcolm, R.E. (eds) Soil Organic Matter and Biological Activity. Developments in Plant and Soil Sciences, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5105-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5105-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8757-5

  • Online ISBN: 978-94-009-5105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics