Skip to main content

Organic Matter and Trace Metals in Soils

  • Chapter

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 16))

Abstract

In the soil the availability to plants of any nutrient element is conventionally described in terms of two parameters. These are the intensity factor, which is the concentration of the element in solution, and the capacity factor which is the ability of the solid phases in the soil to replenish the nutrient element as it is depleted from the solution. The fundamental relationship between intensity and capacity factors depends on the solubility relationships between soil minerals32. However, with respect to transition metal trace elements, soil organic matter, in its various forms, has important effects on both intensity and capacity factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison F.E. 1973. Soil organic matter and its role in crop production. Elsevier, Amsterdam.

    Google Scholar 

  2. Baes C.F. and Mesmer R.E. 1976. The Hydrolysis of Cations. Wiley-Interscience, New York.

    Google Scholar 

  3. Benians G., Scullion P. and Fitzhugh G.R. 1977. Concentrations and activities of ions in solutions displaced from basaltic soils. Journal of Soil Science, 28, 454–461.

    Article  CAS  Google Scholar 

  4. Bowen G.D. 1969. Nutrient status effects on loss of amides and amino acids from pine roots. Plant and Soil, 30, 139–142.

    Article  CAS  Google Scholar 

  5. Bresnahan W.T., Grant C.L. and Weber J.H. 1978. Stability constants for the complexation of copper (II) ions with water and soil fulvic acids measured by an ion selective electrode. Analytical Chemistry, 50, 1675–1679.

    Article  CAS  Google Scholar 

  6. Burk D., Lineweaver H. and Horner C.K. 1932. Iron in relation to the stimulation of growth by humic acid. Soil Science, 33, 413–435.

    Article  CAS  Google Scholar 

  7. Cheam V. 1973. Chelation studies of copper (II): fulvic acid system. Canadian Journal of Soil Science, 53, 377–382.

    Article  CAS  Google Scholar 

  8. Davis J.A. and Leckie J.O. 1978. The effect of complexing ligands on trace metal adsorption at the sediment/water interface. In Environmental Biogeochemistry and Geomicrobiology. Vol. 3. Ed. Krumbein W.E., Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  9. David J.A. and Leckie J.O. 1978. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environmental Science and Technology, 12, 1309–1315.

    Article  Google Scholar 

  10. Ellis B.G. and Knezek B.D. 1972. Adsorption reactions of micronutrients in soils. In Micronutrients in Agriculture. Soil Science Society of America. Madison. Eds. Mortvedt J.J., Giordano C.M. and Lindsay W.L.

    Google Scholar 

  11. Gadde R.R. and Laitinen H.A. 1974. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Analytical Chemistry, 46, 2022–2026.

    Article  CAS  Google Scholar 

  12. Gamble D.S., Schnitzer M., and Hoffman I. 1970. Cu2+ — fulvic acid chelation equilibrium in 0.1 m KC1 at 25.0°C. Canadian Journal of Chemistry, 48, 3197–3204.

    Article  CAS  Google Scholar 

  13. Gamble D.S., Schnitzer M. and Skinner D.S. 1977. Mn(II) fulvic acid complexing equilibrium measurements by electron spin resonance spectrometry. Canadian Journal of Soil Science, 57, 47–53.

    Article  CAS  Google Scholar 

  14. Geering H.R. and Hodgson J.F. 1969. Micronutrient cation complexes in soil solution: III Characterisation of soil solution ligands and their complexes with Zn2+ and Cu2+. Soil Science Society of America Proceedings, 33, 54–59.

    Article  CAS  Google Scholar 

  15. Geering H.R., Hodgson J.F. and Sdano C. 1969. Micronutrient cation complexes in soil solution IV. The chemical state of manganese in soil solution. Soil Science Society of America Proceedings, 33, 81–85.

    Article  CAS  Google Scholar 

  16. Grimme H. 1968. Die Adsorption von Mn, Co, Cu und Zn durch Goethit aus verdünnten Lösungen. Zeitschrift für Pflanzenernährung und Bodenkunde, 121, 58–65.

    Article  CAS  Google Scholar 

  17. Hale M.G., Foy C.L. and Shay F.J. 1971. Factors affecting root exudation. Advances in Agronomy, 23, 89–109.

    Article  CAS  Google Scholar 

  18. Hale M.G., Moore L.D. and Griffin G.J. 1978. Root exudates and exudation. In Interactions between non-pathogenic soil microorganisms and plants. Eds. Dommergues Y.R. and Krupa S.V. Elsevier, Amsterdam.

    Google Scholar 

  19. Haswell S.J. Personal communication.

    Google Scholar 

  20. Hodgson J.F., Lindsay W.L. and Trierweiler J.F. 1966. Micronutrient cation complexing in soil solution: II complexing of zinc and copper in displaced solution from calcareous soils. Soil Science Society of America Proceedings, 30, 723–726.

    Article  CAS  Google Scholar 

  21. Hussain S.S. and McKeen W.E. 1963. Interactions between strawberry roots and Rhizoctonia fragariae. Phytopathology, 53, 541–545.

    Google Scholar 

  22. Irving H. and Williams R.J.P. 1948. Order of stability of metal complexes. Nature 162, 746–747.

    Article  CAS  Google Scholar 

  23. Ivarson K.C. and Sowden F.J. 1969. Free amino acid composition of the plant root environment under field conditions. Canadian Journal of Soil Science, 49, 121–127.

    Article  CAS  Google Scholar 

  24. James R.O. and Healy T.W. 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface I Co(II) adsorption on SiO2 and TiO2 model systems. Journal of Colloid and Interface Science, 40, 42–52.

    Article  CAS  Google Scholar 

  25. Lakatos B., Tibai T. and Meisel J. 1977. ESR spectra of humic acids and their metal complexes. Geoderma, 19, 319–338.

    Article  CAS  Google Scholar 

  26. Linehan D.J., Goodman B.A. and McPhail D.B. Unpublished observations.

    Google Scholar 

  27. Linehan D.J. 1977. A comparison of the polycarboxylic acids extracted by water from an agricultural top soil with those extracted by alkali. Journal of Soil Science, 28, 369–378.

    Article  CAS  Google Scholar 

  28. Linehan D.J. 1978. Polycarboxylic acids extracted by water and by alkali from agricultural top soils of different drainage status. Journal of Soil Science, 29, 373–377.

    Article  CAS  Google Scholar 

  29. Linehan D.J. 1978. Humic acid and iron uptake by plants. Plant and Soil, 50, 663–670.

    Article  CAS  Google Scholar 

  30. Linehan D.J. and Shepherd H. 1979. A comparative study of the effects of natural and synthetic ligands on iron uptake by plants. Plant and Soil, 52, 281–289.

    Article  CAS  Google Scholar 

  31. Lindsay W.L. 1972. Inorganic phase equilibria of micronutrients in soils. Micronutrients in Agriculture. Eds. Mortvedt J.J., Giordano G.M. and Lindsay W.L. Soil Science Society of America, Madison.

    Google Scholar 

  32. Lindsay W.L. 1979. Chemical Equilibria in Soils. Wiley-Interscience. New York.

    Google Scholar 

  33. McBride M.B. 1978. Transition metal bonding in humic acid: An ESR study. Soil Science, 126, 200–209.

    Article  CAS  Google Scholar 

  34. McBride M.B. 1981. Forms and distribution of copper in solid and solution phases of soil. In Copper in soils and plants. Eds. Loneragan J.F., Robson A.D. and Graham R.D. Academic Press, New York.

    Google Scholar 

  35. Manning P.G. and Ramamoorthy S. 1973. Equilibrium studies of metalion complexes of interest to natural waters VII. Mixed-ligand complexes of Cu(II) involving fulvic acid as primary ligand. Journal of Inorganic and Nuclear Chemistry, 35, 1577–81.

    Article  CAS  Google Scholar 

  36. Martell A.E. and Smith R.M. 1974. Critical Stability Constants. Plenum Press, New York.

    Google Scholar 

  37. Martell A.E. 1975. The influence of natural and synthetic ligands on the transport and function of metal ions in the environment. Pure and Applied Chemistry, 44, 81–113.

    Article  CAS  Google Scholar 

  38. Mattigod S.V., Sposito G. and Page A.L. 1981. Factors affecting the solubilities of trace metals in soils. In Chemistry in the Soil Environment. ASA special publication No. 40. Ed. Stelly M. American Society of Agronomy and Soil Science Society of America. Madison.

    Google Scholar 

  39. Nannipieri P., Pedrazzini F., Arcara P.G. and Piovanelli C. 1979. Changes in amino acids, enzyme activities and biomasses during soil microbial growth. Soil Science, 127, 26–34.

    Article  CAS  Google Scholar 

  40. Newman E.I. 1978. Root microorganisms their significance in the ecosystem. Biological Reviews, 53, 511–554.

    Article  CAS  Google Scholar 

  41. Olsen C. 1930. On the influence of humus substances on the growth of green plants in water culture. Comptes rendus des travaux du Laboratoire Carlsberg, 18, 1–16.

    CAS  Google Scholar 

  42. Paul E.A. and Schmidt E.L. 1960. Extraction of free amino acids from soil. Soil Science Society of America Proceedings, 24, 195–198.

    Article  CAS  Google Scholar 

  43. Piccolo A. and Stevenson F.J. 1982. Infrared Spectra of Cu2+, Pb2+ and Ca2+ complexes of soil humic substances. Geoderma, 27, 195–208.

    Article  CAS  Google Scholar 

  44. Ratnayake M., Leonard R.T. and Menge J.A. 1978. Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytologist, 81, 543–552.

    Article  CAS  Google Scholar 

  45. Rovira A.D. 1959. Root excretions in relation to the rhizosphere effect IV. Influence of plant species, age of plant, light temperature and calcium nutrition on exudation. Plant and Soil, 11, 53–64.

    Article  CAS  Google Scholar 

  46. Rovira A.D. and Davey C.B. 1974. Biology of the rhizosphere. In The Plant Root and its Environment. Ed. Carson E.W. University Press, Virginia.

    Google Scholar 

  47. Rovira A.D. and McDougall B.M. 1967. Microbiological and Biochemical aspects of the Rhizosphere. In Soil Biochemistry. Eds. McLaren A.D. and Peterson G.H. Marcel Dekker, New York.

    Google Scholar 

  48. Sanders J.R. 1982. The effect of pH upon copper and cupric ion concentrations in soil solutions. Journal of Soil Science, 33, 679–690.

    Article  CAS  Google Scholar 

  49. Schnitzer M. and Hansen E.H. 1970. Organo-metallic interactions in soils: 8. An evaluation of methods for the determination of stability constants of metal-fulvic acid complexes. Soil Science, 109, 333–340.

    Article  CAS  Google Scholar 

  50. Sequi P., Guidi G. and Petrazzelli G. 1975. Influence of metals on solubility of soil organic matter. Geoderma, 13, 153–161.

    Article  CAS  Google Scholar 

  51. Shuman L.M. 1977. Adsorption of Zn by Fe and Al hydrous oxides as influenced by aging and pH. Soil Science Society of America Journal, 41, 703–706.

    Article  CAS  Google Scholar 

  52. Shuman M.S. and Cromer J.L. 1979. Copper association with aquatic fulvic and humic acids. Estimation of conditional formation constants with a titrimetric anodic stripping voltammetry procedure. Environmental Science and Technology, 13, 543–545.

    Article  CAS  Google Scholar 

  53. Stanton D.A. and Burger R. Du T. 1967. Availability to plants of zinc sorbed by soil and hydrous iron oxides. Geoderma, 1, 13–17.

    Article  CAS  Google Scholar 

  54. Stevenson F.J. 1976. Stability constants of Cu2+, Pb2+ and Cd2+ complexes with humic acids. Soil Science Society of America Proceedings, 40, 665–672.

    Article  CAS  Google Scholar 

  55. Stevenson F.J. 1982. Humus Chemistry, Genesis, Composition, Reactions. Wiley-Interscience. New York.

    Google Scholar 

  56. Stevenson F.J., Krastanov S.A. and Ardakani M.S. 1973. Formation constants of Cu2+ complexes with humic and fulvic acids. Geoderma, 9, 129–141.

    Article  CAS  Google Scholar 

  57. Tan K.H. 1978. Formation of metal-fulvic acid complexes by titration and their characterisation by differential thermal analysis and infrared spectroscopy. Soil Biology and Biochemistry, 10, 123–129.

    Article  CAS  Google Scholar 

  58. Vancura V. 1967. Root exudates of plants III. Effect of temperature and “cold shock” on the exudation of various compounds from seeds and seedlings of maize and cucumber. Plant and Soil, 27, 319–328.

    Article  CAS  Google Scholar 

  59. Vancura V. and Hovadik A. 1965. Root exudates of plants II. Composition of root exudates of some vegetables. Plant Soil, 22, 21–32.

    Article  CAS  Google Scholar 

  60. Van den Berg C.M.G. and Kramer J.R. 1979. Determination of complexing capacities of ligands in natural waters and conditional stability constants of the copper complexes by means of manganese dioxide. Analytica Chimica Acta, 106, 113–120.

    Article  Google Scholar 

  61. Vedy J.C. and Bruckert S. 1979. Soil solution: Composition and pedogenic significance. Chapter 8 in Constituents and properties of soils. Ed. Bonneau M. and Souchier B. Academic Press. London.

    Google Scholar 

  62. Vinkler P., Lakatos B. and Meisel J. 1976. Infrared spectroscopic investigations of humic substances and their metal complexes. Geoderma, 15, 231–242.

    Article  CAS  Google Scholar 

  63. Vuceta J. and Morgan J.J. 1978. Chemical modelling of trace metals in fresh waters: role of complexation and adsorption. Environmental Science and Technology, 12, 1302–1308.

    Article  CAS  Google Scholar 

  64. Wilson S.A., Huth T.C., Arndt R.E. and Skogerboe R.K. 1980. Voltammetric methods for determination of metal binding by fulvic acid. Analytical Chemistry, 52, 1515–1518.

    Article  CAS  Google Scholar 

  65. Young S.D., Bache B.W. and Linehan D.J. 1982. The potentiometric measurement of stability constants of soil polycarboxylate Cu2+ chelates. Journal of Soil Science, 33, 467–475.

    Article  CAS  Google Scholar 

  66. Zunino H. and Martin J.P. 1977. Metal binding organic macromolecules in soil. 1. Hypothesis interpreting the role of soil organic matter in the translocation of metal ions from rocks to biological systems. Soil Science, 123, 65–76.

    Article  CAS  Google Scholar 

  67. Zunino H. and Martin J.P. 1977. Metal binding organic macromolecules in soil. 2. Characterization of the maximum binding ability of the macromolecules. Soil Science, 123, 188–202.

    Article  CAS  Google Scholar 

  68. Zunino H., Peirano M., Aguilera M. and Escobar I. 1972. Determination of the maximum complexing ability of water-soluble complexants. Soil Science, 114, 414–416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Linehan, D.J. (1985). Organic Matter and Trace Metals in Soils. In: Vaughan, D., Malcolm, R.E. (eds) Soil Organic Matter and Biological Activity. Developments in Plant and Soil Sciences, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5105-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5105-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8757-5

  • Online ISBN: 978-94-009-5105-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics